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Foreword

Welcome everyone to LAC 2015 in Mainz!

This is the 13th edition of LAC, the international conference with an informal, workshop-
like atmosphere and a unique blend of scientific and technical papers, tutorials, sound
installations and concerts centering on the free GNU/Linux operating system and open
source software for audio, multimedia and musical applications. It is also the first time
that the conference takes place at the Johannes Gutenberg University (JGU) in Mainz.

With about 36,500 students from some 130 nations, JGU is one of the ten largest univer-
sities in Germany. It combines almost all academic disciplines under one roof, including
the Mainz University Medical Center, the School of Music, and the Mainz Academy of Arts,
which is a unique feature in the German academic landscape. The JGU is also one of the
oldest universities in Germany. Founded in 1477 during the era of Johannes Gutenberg and
reopened after a 150-year break in 1946 by the French forces then based in Germany, Jo-
hannes Gutenberg University owes much to the man whose name it bears and his achieve-
ments. In keeping with the Gutenberg Spirit, the JGU has set itself the mission of “moving
minds and crossing boundaries”. Interdisciplinary discourse is therefore a hallmark of our
university. This is also true for the Computer Music Research Group (Bereich Musikinfor-
matik) of the JGU which hosts LAC 2015. Being founded in 1991, our research group has
been among the first German academic institutions in this interdisciplinary field at the in-
tersection of music, mathematics, computer science and media technology. In our media
lab students are working almost exclusively with Linux, and in our research we are also
devoted to contributing to the growing body of open source audio and computer music
software. So our research group owes very much to Linux audio in general and the LAC in
particular, and we are very proud to be this years’ host of the conference.

Thanks to all the contributors who submitted papers and proposed workshops, installa-
tions and music, we will again have an interesting and varied program at the conference.
There will be presentations about the latest Linux-related research and development in
ambisonics, realtime aspects, plugins and modular systems, musical applications, sound
synthesis, programming languages and tools, as well as numerous hands-on workshops
about methods, techniques and both open-source and commercial software and hardware
running on or using Linux. I am grateful that renowned digital signal processing expert
Julius O. Smith III from the CCRMA at Stanford University will present a keynote lecture
on emerging technologies for musical audio synthesis and effects. Another special event
will be the award ceremony for Grame’s 1st Faust Open-Source Software Competition, pre-
sented by Yann Orlarey during the conference. Throughout the day, there will be differ-
ent sound installations and software demonstrations in the installation space and at the
School of Music. In the evening there will be electroacoustic concerts in the “Roter Saal” at
the School of Music, and the traditional Linux Sound Night will take place Saturday night
at the “Baron”, also on the university campus.
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Again, this is the 13th LAC, so what could possibly go wrong? Many things in fact, if it wasn’t
for the tremendous help I had from friends and colleagues from the LAC team and our own
university. In particular, I would like to thank Frank Neumann for organizing the paper
submissions and peer reviews in the face of fairly tight deadlines, Jörn Nettingsmeier for
implementing the live stream and taking care of the concerts, Robin Gareus for helping
with the live stream, the website and the online program, Marc Groenewegen and his col-
leagues and students from the HKU who generously offered to help at the conference, and
everybody who was involved in the paper and music reviews (too numerous to be men-
tioned here, so I have to refer you to the following pages for details). Thanks are also due to
Klaus Pietschmann, head of our institute, for his encouragement and help to remove some
(metaphoric) roadblocks, as well as Peter Kiefer, Moritz Reinisch and the administration of
the School of Music for providing their concert hall and equipment, Karl N. Renner and his
team at the department of Journalism who help us out with professional camera operators
and equipment for the live stream, Nicole Labitzke and her staff at the JGU media center
for providing additional audio equipment, and André Brinkmann and his team at our data
center for their comprehensive support including server, audio and video equipment as
well as network capacities.

Funding for the conference was generously provided by our research funding department.
I would also like to thank our corporate supporters Bitwig (makers of the Bitwig Studio
DAW software available on Linux, for which registered participants can win a license at
the conference), HörTech (non-profit company for research and development concerning
hearing, which provides us with equipment for the installation space) and MOD (makers
of the universal effect pedal based on Linux, who deserve a special mention for provid-
ing funding for the Linux Sound Night), as well as the campus restaurant, bar and concert
venue “Baron” for organizing and hosting the Linux Sound Night this year.

Last but not least, thanks are due to my own team members Daniel Gebhardt and Felicitas
Volke, as well as our colleagues at the department of Musicology, in particular Thorsten
Hindrichs and Gabriele Maurer, for their help organizing and conducting this event. Spe-
cial thanks go to my wife Evelyn and my entire family for supporting me during the some-
times strenuous times leading up to the conference. This is a real team effort and without
the help from all these people and facilities our small research group would never have
been able to bring about a comprehensive and technically challenging event like this, so a
big thank you to you all!

We hope that you will enjoy the conference and have a pleasant stay in Mainz!

Albert Gräf
Computer Music Research Group
JGU Mainz
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Toolbox for acoustic scene creation and rendering (TASCAR):
Render methods and research applications

Giso GRIMMa,b∗and Joanna LUBERADZKAa and
Tobias HERZKEb and Volker HOHMANNa,b

a Medizinische Physik and Cluster of Excellence Hearing4all
Universität Oldenburg, D-26111 Oldenburg, Germany

b HörTech gGmbH
Marie-Curie-Str. 2, D-26129 Oldenburg, Germany

Abstract

TASCAR is a toolbox for creation and rendering of
dynamic acoustic scenes that allows direct user in-
teraction and was developed for application in hear-
ing aid research. This paper describes the simula-
tion methods and shows two research applications
in combination with motion tracking as an example.
The first study investigated to what extent individ-
ual head movement strategies can be found in dif-
ferent listening tasks. The second study investigated
the effect of presentation of dynamic acoustic cues
on the postural stability of the listeners.

Keywords

Spatial audio, hearing research, motion tracking

1 Introduction

Hearing aids are evolving from simple ampli-
fiers to complex processing devices. Algo-
rithms in hearing devices, e.g., directional mi-
crophones, direction of arrival estimators, or
binaural noise reduction, depend on the spatial
properties of the surrounding acoustic environ-
ment [Hamacher et al., 2005]. Several studies
show a large performance gap between labora-
tory measurements and real life experience, at-
tributed to a changed user behavior [Smeds et
al., 2006] as well as oversimplification of the test
environment [Cord et al., 2004; Bentler, 2005].
To bridge this gap, a reproduction of complex
listening environments in the laboratory is de-
sired. To allow for a systematic evaluation of
hearing device performance, these virtual acous-
tic environments need to be scalable and repro-
ducible. There are several requirements for a
virtual acoustic environment to make it suitable
for hearing research. For human listening a high
plausibility of the environments and a reproduc-
tion of the relevant perceptual cues is required.
For machine listening and processing in multi-
microphone hearing devices, a correct reproduc-
tion of relevant physical properties is needed.

∗ g.grimm@uni-oldenburg.de

For an ecologically valid evaluation of hearing
devices, the virtual acoustic environments need
to reflect relevant every-day scenarios. Addi-
tionally, to assess limitations of hearing devices,
realistic but challenging environments are re-
quired. In both cases, the reproduction need
to allow for listener movements in the environ-
ment and may contain moving sources.

Existing virtual acoustic environment engines
often target authentic simulations for room
acoustics (e.g., EASE, ODEON), resulting in
a large complexity. They typically render im-
pulse responses for off-line analysis or auraliza-
tion. Other tools, e.g., the SoundScapeRen-
derer [Ahrens et al., 2008], do not provide all
features required here, such as room simulation
and diffuse source handling. Therefore, a tool-
box for acoustic scene creation and rendering
(TASCAR) was developed as a Linux audio ap-
plication. The aim of TASCAR is to interac-
tively reproduce time varying complex listening
environments via loudspeakers or headphones.
For a seamless integration into existing mea-
surement tools of psycho-acoustics and audiol-
ogy, low-delay real-time processing of external
audio streams in the time domain is applied,
and interactive modification of the geometry is
possible. TASCAR consists of a standalone ap-
plication for the acoustic simulation, and a set
of command line programs and Octave/Matlab
scripts for recording from and playing to jack
ports, and measuring impulse responses.

The simulation methods and implementation
are described in section 2. Two research appli-
cations of TASCAR in combination with mo-
tion tracking are shown as an example. The
first study (section 3.1) investigates to what ex-
tent individual head movement strategies can
be found in different listening tasks. Results in-
dicate that individual strategies exist in natural
listening tasks, but task specific behavior can be
found in tasks which include localization. The
second study (section 3.2) investigates the effect
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of presentation of dynamic acoustic cues on the
postural stability of the listeners. Test subjects
performed a stepping test while imposed with
stationary or spatially dynamic sounds. Results
show that in the absence of visual cues the spa-
tial dynamics of acoustic stimuli have a signifi-
cant effect on postural stability.

2 TASCAR: Methods and
implementation

The implementation of TASCAR utilizes the
jack audio connection kit [Davis and Hohn,
2003]. Audio content is exchanged between dif-
ferent components of TASCAR via jack ports.
The jack time line is used as a base of all time-
varying features. Audio signals are processed
block-wise in the time domain. A rough sig-
nal and data flow chart of TASCAR is shown in
Figure 1.

TASCAR

acoustic model

primary
source

image
source

receiver

loudspeaker
or binaural

internal
audio
player

diffuse
sound
model

external
audio

video
playback

visualization,
computer graphics

time line
(jack transport)

data logger geometry
processor

sensors:
subject response

body sensors

controller
e.g. gamepad

audio timegeometry

Figure 1: Schematic audio and control signal
flow chart of TASCAR in a typical hearing re-
search subjective test application.

The structure of TASCAR can be divided into
three major components: Audio content is de-
livered by an audio player module. It provides
a non-blocking method of accessing sound file
portions. Audio content can also be delivered by
external sources, e.g., from physical sources, au-
dio workstations, or any other jack client. The
second major block is the geometry processing
of the virtual acoustic environment. The last
block is the acoustic model, i.e., the combina-
tion of audio content and geometry information
into an acoustic environment in a given render
format.

2.1 Geometry processing

An acoustic scene in TASCAR consists of ob-
jects of several types: Sound sources, receivers,
reflectors, and dedicated sound portals for cou-
pled room simulations [Grimm et al., 2014]. All
object types have trajectories defined by loca-
tion in Cartesian coordinates and orientation on
ZYX-Euler-coordinates. These trajectories are
linearly interpolated between sparse time sam-
ples; the location is interpolated either in Carte-
sian coordinates, or in spherical coordinates rel-
ative to the origin. The orientation is interpo-
lated in Euler coordinates. The geometry is up-
dated once in each processing cycle.

Sound source objects can consist of multiple
“sound vertices”, either as vertices of a rigid
body, i.e., following the orientation of the ob-
ject, or as a chain, i.e., at a given distance on
the trajectory. Each “sound vertex” is a pri-
mary source.

psrc is the primary source position, prec is
the receiver position, and Orec is the rota-
tion matrix of the receiver. Then prel =
O−1

rec (psrc − prec) is the position of the sound
source relative to the receiver, and r = ||prel||
is the distance between source and receiver.

Reflectors can consist of polygon meshes with
one or more faces. For each mesh, reflection
properties can be defined. For a first order im-
age source model, each pair of primary source
and reflector face creates an image source. For
higher order image source models, also the im-
age sources of lower orders are taken into ac-
count. A schematic sketch of the image model
geometry is shown in Figure 2. The image
source position pimg is determined by the clos-
est point on the (infinite) reflector plane pcut to
the source psrc: pimg = 2pcut − psrc.

The image source position is independent of
the receiver position. However, the visibility of
an image source depends on the receiver posi-
tion and the reflector dimension. If the inter-
section point of the connection from the image
source to the receiver with the reflector plane
pis is within the reflector boundaries, the im-
age source is visible, and a specular reflection
is applied. If pis is not within the reflector
boundaries, the effective image source position
is shifted into the direction of the closest point
on the boundary to pis, and an “edge reflec-
tion” is applied. The differences between these
two reflection types in terms of audio processing
are described in section 2.2.2.
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Figure 2: Schematic sketch of the image model geometry. Left panel: “specular” reflection, i.e.,
the image source is visible within the reflector; right panel: edge reflection.

2.2 Acoustic model

For each pair of receiver and sound source –
primary or image source – an acoustic model is
calculated. The acoustic model can be split into
the transmission model, which depends only on
the distance between source and receiver, an
image source model, which depends on the re-
flection properties of the reflecting surfaces as
well as on the “visibility” of the reflected image
source, and a receiver model, which encodes the
direction of the sound source relative to the re-
ceiver into the render output format.

2.2.1 Transmission model

The transmission model consists of air absorp-
tion, and a time-varying delay line for a simu-
lation of Doppler-shift and time-varying comb-
filter effects.

Point sources follow a 1/r sound pressure law,
i.e., doubling the distance r results in half of the
sound pressure. Air absorption is approximated
by a simple first order low-pass filter model with
the filter coefficients controlled by the distance:

yk = a1yk−1 + (1− a1)xk (1)

a1 = e−
rfs
cα , (2)

where c is the speed of sound, xk is the source
signal at the sample k, and yk is the filtered
signal. The empiric constant α = 7782 was
manually adjusted to provide sensible values for
distances below 50 meters. This approach is

very similar to that of [Huopaniemi et al., 1997]
who used a FIR filter to model the frequency
response at certain distances. However, in this
approach the distance parameter r can be var-
ied dynamically.

The time varying delay line uses nearest
neighbor interpolation1.

2.2.2 Image source model

Early reflections are modeled using an image
source model. In opposite to most commonly
used models (e.g., [Allen and Berkley, 1979])
which calculate impulse responses for a rectan-
gular enclosure (“shoebox model”), reflections
are simulated for each reflecting polygon-shaped
surface.

With finite reflectors, it is distinguished be-
tween a “specular” reflection, when the im-
age source is visible from the receiver position
within the reflector, and an “edge” reflection,
when the image source would not be “visible”.
In both cases, the source signal is filtered with
a first order low pass filter2 determined by a re-
flectivity coefficient ρ, and a damping coefficient
δ:

yk = δyk−1 + ρxk (3)

For “edge” reflections, the effective image
source is shifted that it appears from the di-

1Other interpolation methods are planned.
2In later versions of TASCAR the reflection filter will

be controlled by frequency-dependent absorption coeffi-
cients to avoid the sample rate dependency.
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rection of a point on the reflector edge which
is closest to pis. If receiver or sound source are
behind the reflector, the image source is not ren-
dered.

2.2.3 Receiver model

A receiver encodes the output of the transmis-
sion model of each sound source into the output
format, based on the relative position between
sound source and receiver, pk,rel. Each receiver
owns one jack output port for each output chan-
nel n; the number of channels depends on the
receiver type and configuration. The receiver
output signal zk(n) for the output channel n
and sound source k is

zk(n) = w(pk,rel, n)yk (4)

with the transmission model output signal yk.
w(prel, n) are the driving weights for each out-
put channel. The mixed output signal of the
whole virtual acoustic environment is the sum of
zk(n) across all sources k, plus the diffuse sound
signals decoded for the respective receiver type
(see section 2.3 for more details).

Several receiver types are implemented: Vir-
tual omni-directional microphones simply re-
turn the output without directional processing,
w = 1. Simple virtual cardioid microphones ap-
ply a gain g depending on the angle θ between
source and receiver:

w =
1

2
(cos(θ) + 1) (5)

For reproduction via multichannel loudspeaker
arrays, receiver types with one output channel
for each loudspeaker can be used. A “near-
est speaker” receiver is a set of virtual loud-
speakers at given positions in space (typically
matched with the physical loudspeaker setup).
The driving weights for each virtual loudspeaker
are 1 for the least angular distance between
the virtual loudspeaker and prel, and 0 for all
other channels. Other receiver types are hori-
zontal and full-periphonic 3rd order Ambison-
ics [Daniel, 2001], VBAP [Pulkki, 1997], and
“basic” as well as “in-phase” ambisonic panning
[Neukom, 2007].

Since the geometry is updated only once in
each processing block, all receiver types inter-
polate their driving weights so that the pro-
cessed geometry is matched at the end of each
block. For some receiver types, e.g., 3rd order
Ambisonics, this may lead to a spatial blurring
of the sources if the angular movement within

one processing block is large compared to the
spatial resolution of the receiver type.

2.3 Diffuse sources and reverberation

Diffuse sources, e.g., background signals, or
diffuse reverberation [Wendt et al., 2014], are
added in first order ambisonics (FOA) format.
No distance law is applied to diffuse sound
sources; instead, they have a rectangular spa-
tial range box, i.e., they are only rendered if
the receiver is within their range box, with a
von-Hann ramp at the boundaries of the range
box. Position and orientation of the range box
can vary with time. The diffuse source signal is
rotated by the difference between receiver orien-
tation and box orientation. Each receiver type
provides also a method to render FOA signals
to the receiver-specific output format.

2.4 Further components

Besides the open source core of TASCAR in
form of a command line application3, a set
of extension modules is commercially devel-
oped by HörTech gGmbH. These components
include a graphical user interface, a time aligned
data logging system for open sound control
(OSC) messages, interfaces for motion trackers
and electro-oculography, and specialized con-
tent controllers.

3 Example research applications

In this section, two studies related to hearing
aid research which are based on TASCAR are
briefly described, to illustrate possible applica-
tions.

3.1 Individualized head motion
strategies

The hypothesis of this study was that task-
specific head movement strategies can be mea-
sured on an individual basis. Head movements
in a natural listening environment were as-
sessed. A panel discussion with four talkers
in a simulated room with early reflections was
played back via an eight-channel loudspeaker
array, using 3rd order Ambisonics. Head move-
ments were recorded with the time aligned data
logger using a wireless inertial measurement
unit and a converter to OSC messages.

Figure 3 shows five individual head orien-
tation trajectories. Systematic differences can
be observed: Whereas one subject (green line)
performs a searching motion, i.e., modulation

3https://github.com/gisogrimm/tascar
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Figure 3: Intensity of a panel discussion in a room as a function of time and azimuth (shades of
gray) with five individual head orientations.

around the final position, at each change of talk-
ers, other subjects adapt slower to source posi-
tion changes. One subject (blue line) shows a
constant offset, possibly indicating a better-ear
listening strategy.

3.2 Postural stability

Some hearing aid users feel disturbed by fast-
acting automatics of hearing aids and the poten-
tially resulting quickly changing binaural cues.
To prepare the ground for further investigations
of this effect, the second study assessed the ef-
fect of spatially dynamic acoustic cues on the
postural stability [Büsing et al., 2015]. It is
based on an experiment in which it was shown
that the presence of a stationary sound can im-
prove the postural stability in the absence of
visual cues [Zhong and Yost, 2013]. A Fukuda
stepping test was performed, in which the sub-
jects were asked to step 100 steps in a fixed po-
sition. The subject drift was taken as a measure
of postural stability.

In this study with 10 young participants with
normal vision and hearing, the factors vision
(open or closed eyes), stimulus (static or mov-
ing) and spatial complexity (two sources or many
sources) on postural stability were analyzed.
The stimuli were rendered with TASCAR; the
factors stimulus and spatial complexity were re-
alized by alternative virtual environments. The
environment with low complexity was a kitchen
scene with a frying pan and a clock, either
rendered statically or with a sinusoidal rotate

around the listener. The complex environment
was a virtual amusement park, either from a
carousel perspective or from a static position.
The subjects were tracked with the microsoft
kinect skeleton tracking library. The positions
of the modeled nodes were send from the win-
dows PC via OSC to the TASCAR data logger.
The body rotation was measured as the rota-
tion of the shoulder skeleton nodes. The results
are shown in Figure 4. Vision has the largest
effect on the body rotation; with open eyes the
average body rotation during the test is small,
independent from the stimulus and complexity
condition. However, without visual cues, the
spatially dynamic complex scene leads to a sig-
nificantly higher body rotation than the corre-
sponding complex static scene.

4 Conclusions

To bridge the gap between laboratory results
and real-life experience in the domain of hear-
ing research and hearing device evaluation, a
tool for acoustic scene creation and rendering
(TASCAR) was developed. The tool focuses on
a reproduction of perceptual cues and physical
properties of the sound field which are relevant
for typical applications in hearing device re-
search. Simplifications allow for computational
efficiency. The implementation utilizes the jack
audio connection kit, resulting in a large flexi-
bility.

To compute the sound at a given position of
the receiver, the signal coming from each source
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Figure 4: Body rotation in a Fukuda stepping test in a simple scene (left panel) and a complex scene
(right panel). In the absence of visual cues, the dynamic cues (red diamonds) have a significant
effect on the body rotation in the complex scene.

– primary or image source – is computed based
on the transmission model, i.e., depending on
the distance. The receiver output signal is com-
puted depending on the type of the receiver and
the angle between source and receiver. The re-
ceiver signals from all sources are added up and
combined with diffuse sounds, resulting in the
sound of a virtual acoustic environment in a
given point.

Two studies based on the spatial audio re-
production of TASCAR demonstrate its appli-
cability as a research tool for reproduction of
spatially dynamic acoustic environments.
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Abstract
This paper serves to update the community on the
development of OpenMixer, an open source, mul-
tichannel routing platform designed for CCRMA.
Serving as the replacement for a digital mixer,
OpenMixer provides routing control, Ambisonics de-
coders, digital room correction, and level metering
to the CCRMA Listening Room’s 22.4 channel, full
sphere speaker array.
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1 Introduction

The Listening Room at the Center for
Computer Research in Music and Acoustics
(CCRMA) is a versatile studio space serving the
CCRMA community. Featuring a 22.4 channel
spherical speaker array and a 32 speaker wave
field synthesis system, the Listening Room is an
important facility for research, music composi-
tion, and 3D sound diffusion among other uses.
As conventional mixers are limited in config-
urability, channel count, and usability, we have
implemented a software routing system—called
OpenMixer—to control the primary speaker
system.

Although conceived in 2006, the implemen-
tation of OpenMixer began in 2009. Since
then, the capabilities of the Listening Room
developed—there are more speakers, faster
computers, and more users. To meet the de-
mands, OpenMixer has been under continuous
development. This paper serves as an update
to its current status and extends Lopez-Lezcano
and Sadural’s 2010 LAC paper [1].

1.1 Original Implementation

OpenMixer is our hardware and software solu-
tion to the problem of routing, mixing and con-
trolling the diffusion of multiple multichannel
sources over a large number of speakers, and

was tailored to the Listening Room studio at
CCRMA. The control hardware is comprised
of standard PC computer components housed
in a fan-less case and off-the-shelf RME audio
sound cards, plus external Solid Stage Logic Al-
phaLink MADI AX and Aphex 141 boxes for
A/D and D/A conversion. The control soft-
ware runs on Gnu/Linux and is a collection of
free, open source software programs coordinated
from a master control program written in the
SuperCollider programming language. Inputs
to the system include 3 ADAT connections to
and from the Listening Room Linux workstation
(a regular CCRMA Linux computer that can be
used for music or sound work and has direct ac-
cess to all speakers), 2 additional ADAT I/Os
for external digital sources, 16 line level ana-
log inputs, 8 microphone preamplifier inputs, 8
analog inputs for a media player, and 4 ethernet
jacks connected to a separate network interface
(which can also provide Internet access) that en-
able computers which have NetJack easy access
to all speakers and features of the system.

At the time the previous paper was written,
the Listening Room was equipped with only 16
speakers in a 4 + 8 + 4 configuration, which
could either be addressed independently or be
fed the signals of an Ambisonics decoder (second
order horizontal, first order vertical) integrated
into the system. Two Behringer USB control
surfaces (BCF200 and BCR200) provided a sim-
ple and easy-to-use user interface.

1.2 Changes

The following sections outline most of the
changes to OpenMixer since 2009, both in hard-
ware and in the underlying control software and
functionality.
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2 Hardware Upgrades

2.1 Speakers

The number of speakers in the Listening Room
has grown over time. The last major upgrade
happened in March 2011, when the number of
main speakers was changed from 16 to 22 (23 if
we count an additional “center channel” which
is only used for more accurate 5.1 or 7.1 play-
back). The spatial configuration was changed
from 4 + 8 + 4 to 1 + 6 + 8 + 6 + 1,
which enabled us to cover the sphere more uni-
formly and thus decode full periphonic third or-
der Ambisonics with high accuracy (see figs. 1
to 3). In addition, four subwoofers were added,
which required adding an additional eight chan-
nel ADAT D/A converter to the equipment
rack.

Figure 1: The Listening Room

Figure 2: 7 elevated speakers

2.2 Computer and Peripherals

One of CCRMA’s fan-less Linux machines is at
the heart of the Listening Room—OpenMixer
system. As we needed more processing power
to support some of the planned expansions of
the OpenMixer system, we migrated the hard-
ware from an old quad core Q9550 CPU running

Figure 3: 7 speakers below the grid floor

at 2.83GHz, an EP45-DS3R Gigabyte mother-
board, and 8G of RAM to a newer quad core
i7-3770K CPU running at 3.50GHz and using
a DZ77GA-70K Intel motherboard with 32G of
RAM. At the same time we moved from the
old Fedora 14 platform to Fedora 20 (new real
time (RT) patched kernel and newer versions of
all packages). An updated hardware signal-flow
chart can be seen in fig. 4.

The upgrade was anything but boring. Al-
though much faster, the upgraded computer re-
fused to work with the PCI audio cards used
by the old hardware. We were using two RME
cards in tandem—one RME Hammerfall DSP
MADI PCI that interfaced with the main SSL
A/D D/A box and an RME 9652 PCI card for
additional ADAT ports. The upgraded moth-
erboard included two legacy PCI slots for that
purpose, but we were never able to have both
cards working at the same time. The second
card would fail to get interrupts delivered to it.
This was difficult to debug and we spent count-
less hours switching cards around. We eventu-
ally had to move to newer PCI express cards
with equivalent functionality (an RME HDSPe
MADI and an RME RayDAT PCIe).

Even then, the technique of aggregating both
cards into a composite ALSA device using
.asoundrc did not work anymore. The newer
kernel, ALSA drivers, and hardware could not
get the card periods aligned, even though the
sound cards are synced using word clock. JACK
would immediately start generating xruns when
started on the composite device—each card by
itself would work fine. To get around this prob-
lem we tried running JACK on only one of the
cards and connecting the second card to the
system. We did this through either JACK’s
audioadapter internal client or alsa_in and
alsa_out clients. In both cases, the DSP load
was too high even for the upgraded hardware
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Figure 4: System hardware diagram

platform.
We finally used Fons Adriaensen’s Zita-

ajbridge to add the second card as a separate
JACK client [2]. As in the previous solutions,
this performs unnecessary sampling rate conver-
sion of the second card inputs and outputs, but
it was the only way to get the system to work
reliably and the additional load was acceptable
(between 9 and 10% of a core each for 64 in-
put and output channels). Another twist to the
story is that we could not get the MADI card
to run as the master card when using the Ray-
DAT as a secondary audio card. We had to run
the RayDAT as the master, which increased the
channel count to sample-rate conversion as well
as the load. All these sound driver peculiari-
ties need serious debugging, but we just did not
have the time to do that.

For cases like this one it would be nice to have
an option in Zita-ajbridge to not do sampling
rate conversion at all, as the cards run in sync
through word clock.

3 Software Upgrades

3.1 SuperCollider and Supernova

The majority of OpenMixer runs inside Super-
Collider, a programming environment specifi-
cally designed for audio applications [3]. In ad-
dition to being well supported by a large devel-
oper/user community, SuperCollider is extend-

able through custom UGens and plugins and
handles multichannel audio, MIDI, and OSC in
a native and intuitive fashion.1 SuperCollider
itself is really two programs—an interpreted
language (sclang) controlling a separate syn-
thesis server (scsynth) running as a separate
unix process.

In this new version of OpenMixer, we
switched the synthesis server to SuperNova, an
alternative server written by Tim Blechmann
which supports automatic parallelization of the
DSP load across multiple cores [4]. This simpli-
fied the software considerably, as before this, we
were performing load balancing across cores by
instantiating several instances of scsynth and
controlling which server was chosen for particu-
lar tasks by hand.

When the OpenMixer computer boots, Su-
perCollider runs automatically as a boot ser-
vice and starts all other ancillary software. The
main task of SuperCollider is routing audio from
multiple sources (Linux workstation, ADAT,
analog, BluRay, mic preamps, and networks
sources) to the speaker array, as well at to
the Linux workstation and networks sources for
recording. This represents a complex many-to-
many routing relationship through the use of
software buses (see fig. 5). In addition to rout-
ing straight from a channel to some number
of speakers (each with independent gain con-
trol), OpenMixer also supports decoding of up
to third order Ambisonics audio streams. An-
other important task that SuperCollider per-
forms is as a task manager for subsidiary pro-
grams such as JACK and Jconvolver. If any of
OpenMixer’s auxiliary processes dies, the sys-
tem restarts them automatically.2

3.2 System software

Together with the hardware changes, we up-
graded the operating system to Fedora 20 and
a new RT patched kernel [5]. To get the best
real-time performance from the new system, we
needed to perform a few new tweaks to its con-
figuration.

We found that the Intel i7-3770K pro-
cessor together with the new kernel (cur-
rently 3.14.x with the latest RT patch)
used the new intel_pstate frequency
scaling driver instead of the conventional

1We could only imagine the horrors of programming
OpenMixer in C or C++!

2Except in very bad situations...
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Figure 5: Simplified OpenMixer software rout-
ing diagram

governor-based scaling cpupower software.
The intel_pstate driver can be controlled
through variables in the /sys filesystem
(/sys/devices/system/cpu/intel_pstate).
The following incantation was used to tell the
driver to try to run all cores at the maximum
speed all the time:

echo 100 > /sys/devices/system/cpu/
intel_pstate/min_perf_pct

We also disabled the thermald daemon which
we normally run in all our Linux workstations,
as it also tweaks the speed of the processor cores
if the thermal load exceeds preset limits. We
know what the load on the processor is, so there
is no risk of thermal overloads. In both cases, we
want the core speed to be pegged to the max-
imum available. It looks like the scheduler is
not entirely aware of the current speed of each
core and can migrate a computationally heavy
task from a core running at full speed to one
that is idling (and running at a very low clock
frequency). The intel_pstate driver will of
course adjust the speed of the slow core, but
not fast enough to avoid an xrun in some cases.

We also had to disable hyper-threading (HT)
in the BIOS. This disables the additional “fake”
cores and brings down the total number from
eight to four (but those four are real cores—we
will use a cheaper Intel i5 processors which lacks
hyper-threading for future deployments). With-
out these changes, we experienced occasional
xruns in JACK. HT creates two logical cores out
of each physical core by storing extra state in-
formation that enables both logical cores to ap-
pear to be independent processors. The poten-
tial improvement in performance is only realized
by highly threaded applications and tops out at
about 20% in ideal conditions. This comes at

the cost of increased thread scheduling latency.
We don’t know how much latency HT actually
adds, but it seems that it is enough in our cur-
rent mix of tasks and threads to negate any ad-
vantage in raw processing power HT might of-
fer [6–8].

The start-up scripts that boot OpenMixer
have also changed. The boot activation of the
software now happens through a static systemd
service. The service executes a script that
tweaks root level access configuration settings
and then starts the main start-up script as the
“openmixer” user. This in turn starts a private
X server for future GUI extensions and transfers
control to sclang (the SuperCollider language).
The script also re-starts sclang if for some rea-
son sclang dies.

3.3 User Interface

The user interface in the previous version of
OpenMixer was limited to two Behringer con-
trol surfaces to access most common settings.
This was a deliberate choice to keep the inter-
face simple and mode-less, where every button,
fader, and knob had only one clearly labeled
function. Most of the interface has not changed
but some new functions have been added (see
fig. 6). For example, the master level control
knobs also double as level meters for each bank
of 8 channels (you can select the function of the
knobs), there is a “DRC on/off” button that can
be used to disable the correction filters on each
speaker, we now have a monitor option (with
optional pre-fader level) that routes any input
back to the Linux workstation, we implemented
a speaker test function to quickly make sure all
speakers are operational and also a software re-
set that reinitializes OpenMixer.

Figure 6: User interface

We have also employed SuperCollider’s QT
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GUI objects to build a graphic user interface so
that a monitor connected to the control com-
puter can display relevant information. For
now, we have only implemented input and out-
put VU level meters, but this change opens the
door to future upgrades that should make Open-
Mixer even simpler to use, specially if we use a
video screen with touch control.

OpenMixer is internally controlled through
OSC messages. We have been therefore exper-
imenting with applications like TouchOSC on
tablets or smart phones to be able to control
OpenMixer remotely through simple apps in-
stalled in user’s equipment [9].

3.4 Subwoofer Processing

The addition of subwoofers to the Listen-
ing Room required us to implement proper
crossovers in software. We used LinkwitzRiley
4th order crossovers implemented as SuperCol-
lider UGens that are part of the instruments
that do software mixing and routing within
OpenMixer.

3.5 Ambisonics Decoding with ADT
and ATK

First through third order Ambisonics decoders
are naively supported by OpenMixer. In the
previous version of OpenMixer, Ambisonics de-
coders were provided by running ambdec_cli
as a subprocess of the master SuperCollider
program, with decoder matrices tuned to our
speaker arrangement kindly supplied by Fons
Adriansen. A stereo UHJ decoder was also pro-
vided by running Jconvolver as another subpro-
cess with the supplied UHJ preset configuration.

In the new version of OpenMixer, we have
switched to using decoders calculated by the
Ambisonics Decoder Toolbox (ADT), written
by Aaron Heller and Eric Benjamin [10–12].
ADT consists of Matlab/GNU Octave scripts
that calculate Ambisonics decoders though a
variety of techniques. In critical listening
tests, the decoders have proved to perform very
closely to the previous hand-tuned ones. In ad-
dition to generating Ambdec configuration files,
ADT writes the decoders as Faust programs
which can then be compiled to create native Su-
perCollider UGens [13]. For stereo UHJ decod-
ing, we have switched to the Ambisonic Toolkit
(ATK) UGens, written primarily by Joseph An-
derson [14]. We have been able to fold Ambison-
ics decoding entirely into SuperCollider which
minimizes the complexity of the code, the num-

ber of external programs used, JACK graph
complexity, and context switches.

3.6 Digital Room Correction

From the start, OpenMixer calibrates all speak-
ers for uniform sound pressure level and delay
at the center of the room. While the new lo-
cation of the speakers in the studio covers the
sphere with better resolution, they are not re-
ally suspended in a free field condition. In
particular, the speakers located under the grid
floor (below the listener) have a different tonal
quality due to the physical construction of the
“pit” in which they are located. Furthermore,
not all speakers are the same exact model (al-
though they all share the same high frequency
drivers). We have Mackie HR824s at ear level
and smaller Mackie HR624s for the elevated and
lowered speakers. The result of this led to in-
correct and sometimes confusing rendering, es-
pecially when decoding full sphere Ambisonics
(manifested through a tendency of sounds to be
“pulled” towards the ceiling).

In the new version of OpenMixer, we have im-
plemented digital room and speaker correction
using Denis Sbragion’s DRC software package,
as described by Joern Nettingsmeier [15]. By
recording the impulse responses of each speaker
at the listening position, inverse FIR filters can
be calculated to even out small differences in
speaker impulse response due to the speakers
themselves and their location in the room.3

This, coupled with the very dry acoustics of
the studio itself makes for an accurate and even
reproduction of sound over the whole sphere
around the listening position. The only trade
off is an increase of approximately 10 millisec-
onds in the latency of the system. We have
added an on/off switch to be able to bypass the
DRC generated correction filters and access the
speakers directly if necessary.

Jconvolver, written by Fons Adriaensen, is
used as an external subprocess of the main Su-
perCollider program and provides an efficient,
real-time convolution engine that performs the
filtering [17].

3.7 Adding HDMI inputs

We recently had the need to allow users to
connect HDMI audio based equipment (specif-
ically game consoles—for research, of course—

3We used 20 second logarithmic chirps, recorded and
analyzed with Fons Adriaensen’s Aliki [16].
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and also laptops). This adds another way to
connect equipment to the system and can be
used to play back 5.1 or 7.1 content (easier in
those cases than using NetJack or analog in-
terfaces). We bought an Outlaw Model 975
surround processor, a low cost unit that pro-
vides both HDMI switching and decoding of
the most common compressed surround formats
(Dolby Digital, DTS, Dolby TrueHD, and DTS-
HD Master Audio, etc). The analog outputs of
the unit were connected to the “player” analog
interface, and the existing Oppo BluRay player
was connected to one of the Outlaw’s HDMI in-
puts.

The only gripe is that the unit cannot (yet)
be controlled from OpenMixer itself. It would
be nice to be able to control everything from
the OpenMixer control surfaces so that the user
does not need to know which HDMI input is
which and how the surround processor is con-
trolled. We could use an infrared remote con-
trol, or inquire if the RS232 interface included
in the unit can be used for control in addition
to firmware upgrades.

3.8 Demo Mode

OpenMixer makes the Listening Room easily
configurable, however, it requires some effort
between walking into the studio and hearing
sound. In the past, demonstrations of the Lis-
tening Room’s sound system—which are quite
frequent—typically included hunting for saved
Ardour sessions to recall and some amount
of guesswork to find projects spread across
CCRMA’s filesystem. To simplify this process,
we implemented a demo mode that highlights
the capabilities of the system in an easy to use
way. We used a Korg nanoKONTROL2 as a
control surface that is patched directly to Open-
Mixer. This controller has eight channel strips
(three buttons, a knob and a fader) and trans-
port control buttons. We have pre-rendered
an assortment of multi-channel works for the
Listening Room’s speaker configuration that
can be easily triggered through the nanoKON-
TROL2.

With minimal effort, someone can listen to a
curated set of mixes of great variety. We have
included selections that show off different types
of 3D diffusion (e.g., quad, 5.1, octophonic,
third order periphonic Ambisonics, etc.) as well
as mixing style (e.g., “concert hall-esque,” “fully
immersive,” “academic electroacoustic,” etc.).

One such piece, a recording mixed through Am-
bisonics, is rendered both in full third order Am-
bisonics and stereo UHJ in a time-synced way
so the “immersive-ness” of the decoders can be
audified and evaluated.

4 Future Work

Although OpenMixer was originally written for
the CCRMA Listening Room, we are working
to parameterize the scripts so that it is more
portable.4 Once appropriately parameterized,
we envision OpenMixer as a useful tool for other
people controlling multichannel speaker arrays.5

We are in the process of implementing Open-
Mixer in our small concert hall, the Stage, that
is equipped with a 16.8 channel 3D speaker sys-
tem. OpenMixer will make it possible to easily
move pieces from the Listening Room environ-
ment to the concert hall. This is especially true
in the Ambisonics domain, as new decoder tech-
nologies implemented in ADT make it relatively
easy to design effective 3D decoders for dome
speaker configurations such as the one we have
on the Stage. CCRMA concerts frequently fea-
ture large speaker arrays (up to 24.8) which are
controlled with similar systems. Making Open-
Mixer a general solution would simplify these
large scale productions.

Much work remains to be done in the soft-
ware itself, in particular, to use the new X-based
GUI interface and to control the whole system
through OSC from tablets and smart phones.

In the Listening Room itself, we have plans
to add more subwoofers (for a total of 8) to
increase both the fidelity and localization reso-
lution of low frequencies.

As the technology gets faster and the number
of speakers grow, OpenMixer will most likely
remain a work-in-progress.

We originally intended to use JackTrip as
an additional input source for remote perfor-
mances, but the feature did not see much de-
mand and it was impossible to make JackTrip
work (without changes to the source code) as a
reliable subprocess to the SuperCollider code.
We plan to use the currently unimplemented
JackTrip inputs to house Fons Adriansen’s Zita-
njbridge (network-JACK) JACK clients, thus

4Naturally, this is a challenging task as speaker con-
figuration, sound cards, input sources, etc. are different
for each system.

5More information about OpenMixer can be found at
https://ccrma.stanford.edu/software/openmixer.
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providing a way to connect to the Listening
Room from remote locations [18].

5 Conclusions

OpenMixer is certainly not the only solution
for controlling 3D speaker arrays at CCRMA,
but it has fulfilled its purpose to make the Lis-
tening Room configurable for many different
uses. The latest inclusion of DRC-based im-
pulse response calibration has significantly im-
proved the quality of sound diffusion in the Lis-
tening Room, and is being considered for other
listening spaces at CCRMA.
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Abstract

This paper presents a prototype of a 3D audio
recording system named AudioSense which uses
Wireless Acoustic Sensors to capture spatial audio.
The sound is recorded in real-time by microphones
embedded in each sensor device and streamed to
a Processing Unit for 3D audio compression. One
of the key problems in systems which stream audio
data is end-to-end latency. This paper is focused on
analyzing a set of chosen parameters of the Opus
codec in order to obtain the minimal delay. Experi-
mental results on the prototype system have shown
that it is possible to achieve below 10ms of end-to-
end audio delay with the use of the Opus codec.

Keywords

audio streaming, opus codec, low latency streaming,
wireless sensor network, spatial audio

1 Introduction

The area of 3D audio and object based audio is
currently a hot research topic as evidenced by a
large number of research papers and new emerg-
ing standards such as MPEG-H 3D Audio. The
majority of the research efforts in this area are
concentrated on the audio processing and ren-
dering side. The problem of 3D audio recording
is getting less attention in the literature.

Channel-based method of spatial sound pro-
duction assume that the number of microphones
used during the recording is directly propor-
tional to the number of loud speakers used dur-
ing sound rendering. This can lead to large
numbers of microphones in case of multiple au-
dio channels recordings. In addition, proper
setting and tuning of microphones in the field
can be a tedious task which requires many re-
sources in terms of time and manpower. Cur-
rent distributed recording systems use wired mi-
crophones, which makes it difficult to deploy
and use the system in certain environments.

To solve the limitations of current spatial au-
dio recording systems, the AudioSense system
is being developed. It introduces object-based

sound representation and wireless audio stream-
ing. The system can be described as a Wireless
Acoustic Sensor Network (WASN) [Bertrand,
2011; Akyildiz et al., 2007]. In this system in-
dividual sound sources (objects) are extracted
from a sound mixture using sound source sepa-
ration techniques (e.g Independent Component
Analysis [Comon, 1994]). Object based au-
dio representation gives high flexibility in terms
of sound rendering (easy rendering for head-
phones, stereo, 5.1, 7.1 systems) and enables
interactive manipulation of individual sound ob-
jects during playback.

The proposed AudioSense system has many
possible applications and can be used for both
indoor and outdoor audio recordings. The sys-
tem can be used in teleconference applications
to add the possibility to identify speakers by
speech direction. It can be also used for wildlife
monitoring and live TV broadcasts from the
field. The AudioSense technology has applica-
tions in surveillance systems where it can iden-
tify and track objects based on sound process-
ing. The system can be also applied in the en-
tertainment industry in case of movies, games
and virtual reality applications that require im-
mersive 3D sound.

Realisation of the AudioSense system is a
challenging task that requires overcoming ma-
jor challenges in such areas as audio streaming,
audio coding, sound sources separation and au-
dio synchronisation. This paper is focusing on
designing a low delay audio streaming mecha-
nism that meets the strict requirements of the
AudioSense system.

The AudioSense system consists of battery
operated devices with low processing capabil-
ities. Therefore audio recording, coding and
streaming has to be performed with energy effi-
ciency in mind. Live applications of the system
require also low latency audio streaming that
is reliable and allows simultaneous streaming
of data from multiple devices over the wireless
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medium.
In order to minimise the end-to-end delay

it is necessary to optimise the audio record-
ing process, use a low latency audio codec and
streaming method. This paper shows the de-
sign of the system that tries to achieve this goal.
It presents the technologies and design choices
made to implement a low delay audio streaming
system on off-the shelf embedded devices. The
results achieved during the performance eval-
uation of the system show that it is possible
to achieve a low end-to-end delay of 10ms for
wireless audio streaming within the AudioSense
system.

The rest of the paper is organised as follows.
Section 2 presents the related work in the area
of spatial audio recording systems. Section 3 de-
scribes the architecture of the AudioSense sys-
tem together with hardware and software com-
ponents implemented to build the first proto-
type of the system. The results achieved during
the performance evaluation phase are presented
in Section 4. Finally Section 5 concludes the
paper and describes the lessons learnt from im-
plementing a low delay audio streaming system.

2 Related work

Spatial audio recording systems are gaining on
popularity with the introduction of 3D audio
systems and technologies that can reproduce
truly immersive sound. Majority of existing
systems for spatial audio recording use wired
microphones [Gallo et al., 2007] to capture the
virtual sound stage. This fact limits drastically
the mobility of such systems and increases sig-
nificantly their deployment time.

In the literature one can find also wireless sys-
tems for distributed audio recording like [Taysi
et al., 2010] and [Pham et al., 2014]. The main
problem with such systems is that the wireless
sensor network devices are equipped with low
quality microphones, amplifiers and A/D con-
verters due to the low cost and high energy ef-
ficiency of the system. Sounds recorded with
such systems have insufficient quality for many
audio applications.

One of the systems that tries to overcome
the problems of low cost WASNs is WiLMA
[Schörkhuber et al., 2014]. The system in-
troduces a wireless microphone array that of-
fers high quality audio recording and process-
ing. WiLMA enables connection of up to 4
professional microphones to each sensor module
and provides wireless synchronisation for audio

recordings. Similar approach to system design
is presented also in [Mennill et al., 2012] where a
distributed microphone array system is used for
environmental monitoring and animals record-
ing. This system is also based on battery op-
erated sensors and uses GPS for accurate syn-
chronisation of the recordings.

One of the limitations of spatial audio record-
ing systems presented in [Mennill et al., 2012] is
that the system does not offer continuous real-
time wireless audio streaming. All the record-
ings are stored on local flash memory of the
sensor devices. The AudioSense system takes
the next step in spatial audio recording systems
by providing low delay wireless streaming capa-
bilities and audio representation in the object-
based format. These features open up the door
for a whole new range of audio applications that
can be realised with the use of the AudioSense
system.

3 System overview

The proposed architecture of the AudioSense
system is presented in Figure 1. From the func-
tional side the system can be divided into two
parts. The first part consists of Acoustic Sen-
sors that form a wireless network responsible
for audio recording. The second part includes
an embedded device which performs 3D audio
processing. Each device in the wireless sensor
network has one or several microphones, A/D
converter and performs initial audio compres-
sion. Compressed audio signals are transmitted
through the Gateway to the Processing Unit.
The Gateway serves as an interface between the
wireless and the wired part of the system. Af-
ter reception of the audio signals the Process-
ing Unit performs aggregation of the individual
streams.

Each of the streams is decoded and synchro-
nised with each other. In the next step the pro-
cess of sound sources separation is performed
to generate individual audio objects [Salaün et
al., 2014], [Ozerov et al., 2012]. These objects
are then used in the process of 3D audio coding
(e.g. MPEG-H 3D Audio [ISO/IEC WD 23008-
3, 2014]. Finally the encoded audio is transmit-
ted over the Internet to the client side where the
sound rendering is performed.

3.1 Hardware components

From the hardware perspective the Acoustic
Sensor prototype consists of a Beaglebone Black
[Coley, 2014] with an Audio Cape board [Bea-
gleBoard, 2012] and a dedicated microphone
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Figure 1: Architecture of the AudioSense system.

board designed in-house. Beaglebone Black is
a low-power single board computer based on
1GHz ARM Cortex A8 CPU. The board pro-
vides only one 12-bit analog-to-digital converter
which is not sufficient for any professional au-
dio applications. Hence the usage of an Au-
dio Cape (6 channels of up to 96 kHz sampling
at 24 bit) is required to improve the quality of
the recorded sound. For the microphone board
a pair of Monacor MCE-4000 electret omnidi-
rectional microphones is selected due to high
signal to noise ratio and very good sensitivity.
Each microphone is connected to a low noise
operational amplifier - MCP6021. The ampli-
fied acoustic signal is passed on to the Audio
Cape where analog to digital conversion is exe-
cuted. Next, the digital data in one of available
formats (e. g. S16LE) is sent to the Beagle-
bone Black. Each acoustic sensor is equipped
also with a wireless interface compatible with
the IEEE 802.11 a,b,g,n standards. The first
version of the prototypical Acoustic Sensor is
presented in Fig. 2.

Figure 2: First version of the Acoustic Sensor
prototype.

3.2 Software components

The prototype of Audio Sensor is running De-
bian Jessie Linux with kernel version 3.8.13.
In order to implement audio processing on the
device, the Gstreamer framework is utilised.
Sound capturing, coding and streaming are
all implemented within a single Gstreamer
v1.4 pipeline. Figure 3 illustrates Gstreamer
pipelines implemented on both the Acoustic
Sensor and the 3D Audio Processing Unit.

The pipeline on the Acoustic Sensor side is
responsible for capturing audio samples using
the ALSA plugin and encoding them with the
Opus [Valin et al., 2013] encoder. Next, every
packet is encapsulated in the RTP packet and
sent via UDP to the Processing Unit.

On the Processing Unit side each received
packet is processed by the depayloader and
Opus decoder. This processing is performed for
each stream independently. Next step is the
separation plugin, which gets n streams and,
after performing the process of sound sources
separation, generates m audio objects. The pro-
cessed data is passed on to the multiqueue and
then interleaved to form a multichannel wave
file. For this purpose a new Gstreamer mod-
ule is implemented called WavNChEnc. The
stream generated by the module is then passed
to the MPEG-H 3D Audio codec which gener-
ates a single .mp4 file.

To measure time of encoding, the measure-
ments points were set right before and after
Opus encoder. Respectively, on the Process-
ing Unit the points were set before and after
the Opus decoder. Streaming time was mea-
sured with the measurement points set just be-
fore UDP transceiver in Acoustic Sensor and
right after RTP depayloader in the Processing
Unit.

One of the key aspects in networked audio
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systems is audio synchronisation. In order to
provide synchronisation of the recorded audio
streams, a separate synchronisation module is
implemented. The synchronisation method ap-
plied is a hybrid approach based on reference
broadcast that uses the ideas presented in [El-
son et al., 2002] and [Budnikov et al., 2004].
Using this hybrid synchronisation method it is
possible to achieve a synchronisation error of
around 200µs.

Figure 3: Gstreamer pipelines implemented on
the Acoustic Sensor and the 3D Audio Process-
ing Unit side.

4 Performance evaluation

4.1 Test scenarios

The performance of the designed 3D Audio
recording system was evaluated using several
test scenarios. The main goal of the experi-
ments was to adjust and optimise hardware and
software components of the system to achieve
minimal streaming delay for different audio bi-
trates and network setups. Audio streaming la-
tency was measured in an end-to-end manner

which includes:

• Audio encoding time - time needed to en-
code one whole buffer of data by the Opus
encoder. Such measurements were exe-
cuted for different codec parameters which
have the highest impact on the encoding
time (e.g. bitrate, complexity, frame-size).

• Audio decoding time - measurement of de-
coding time for the same set of parameters
as in the case of audio encoding.

• Audio transmission time - packets latency
measurement when streaming wirelessly
over Wi-Fi (IEEE 802.11n).

For the Audio streaming tests the Opus pa-
rameters were constant while the network setup
was different in each experiment. The system
was tested with several Acoustic Sensors in the
network. In each of the cases the distance be-
tween the Acoustic Sensors and the 3D Audio
Processing Unit was different to test the system
in different working conditions. In addition to
latency tests the experiments included also CPU
usage measurements for Opus encoding and de-
coding.

Impact of selected parameters of the Opus
codec on the quality of sound was not the sub-
ject of our tests. Several tests were performed
in the past and are well described in [Hoene et
al., 2011].

4.2 Results

This subsection presents experimental results
achieved by measuring the end-to-end audio
streaming delay in the AudioSense system. The
first set of tests was performed to measure the
encoding delay of the Opus codec in order to
find the optimal codec parameters that enable
minimal processing latency. Three parameters
of the codec were identified as possible candi-
dates for processing delay optimisation:

• Complexity - is defined as a trade-off
between processing complexity and qual-
ity/bitrate. This parameter is selected us-
ing an integer from 0 to 10, where 0 is the
lowest complexity and 10 is the highest. In
the experiments fixed values of 0, 3, 6 and
10 were used to check what is the influence
of complexity on the processing delay.

• Frame size - Opus has fixed frame dura-
tions of 2.5, 5, 10, 20, 40, and 60 ms. In-
crease in the frame duration has influence
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on coding efficiency improvement but the
gain becomes small for frame sizes above
20 ms.

• Bitrate - Opus supports different bitrates in
the range between 6 kbit/s and 510 kbit/s.
Higher bitrate results in higher quality au-
dio and lower latency in packets delivery at
the cost of increased bandwidth.
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Figure 4: Opus encoding time for different val-
ues of complexity and frame-size.
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Figure 5: Opus encoding time for different val-
ues of bitrate and frame-size.

Figure 4 shows Opus encoding delay for dif-
ferent complexity and frame size settings (differ-
ent colors on the figure correspond to different
frame sizes). For all measurements the bitrate
remained constant at the level of 128 kbit/s. It
is clearly visible that the average encoding la-
tency increases with higher complexity values.

The difference is especially visible for higher
frame durations of 40 and 60 ms where the la-
tency is 3 to 6 times higher than in the case of
smaller frame sizes. Therefore the best values of
frame size in case of the AudioSense system are
below 20ms where the encoding delay is smaller
than 10ms. Surprisingly the frame size of 2.5ms
is providing a similar encoding delay as in the
case when the frame duration is set to 20ms. In
terms of complexity the optimal value is 3 with
frame size of 10 ms.

The influence of different audio bitrates on
the Opus encoding delay is illustrated in Fig-
ure 5. The complexity parameter in all cases
is fixed at 0. The experiments are performed
for five audio bitrates (64, 96, 128, 256 and 320
kbit/s) and the same frame size values as in the
previous test. The graph shows that significant
increase in processing time is visible for larger
values of frame size (40 and 60 ms). It is evi-
dent that the bitrate change has much smaller
effect on encoding time than the change of the
complexity parameter. For frame size values be-
low 20ms the change of bitrate has very small
effect on the encoding delay - only 1ms increase
when changing the bitrate from 64kbit/s to 320
kbit/s. This experiment shows once again that
the frame size of 10ms provides the optimal set-
ting in terms of Opus encoding latency.
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Figure 6: Opus decoding time for different val-
ues of complexity and frame-size.

Opus decoding latency is tested in a similar
manner as in the case of encoding. Figure 6
shows the impact of the complexity parameter
on the decoding time for different frame dura-
tion values. The audio bitrate is fixed at 128
kbit/s. As can be seen in Figure 6 the com-
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Figure 7: Opus decoding time for different val-
ues of bitrate and frame-size.

plexity parameter has a small impact on the
overall audio decoding time. For smaller val-
ues of frame size (10ms and below) the decoding
time remains the same for different complexity
values. The difference is visible only in case of
larger frame size values (20, 40 and 60ms) where
the decoding delay can increase or decrease by
around 1ms with the change of codec complex-
ity.

Figure 7 presents Opus decoding times with
respect to different audio bitrates. In all cases
the complexity parameter is set to 0. It is
clearly visible that audio bitrate has very small
impact on the decoding time. The main param-
eter that has the biggest influence on decod-
ing time is frame duration. From the point of
view of Opus decoding, the best performance in
terms of execution time can be achieved for the
smallest possible values of frame size: 2.5 and
5ms.

The AudioSense system consists of battery
operated sensor devices therefore the power con-
sumption during codec operation is an impor-
tant parameter that can limit the total opera-
tion time of the system. Figure 8 presents the
CPU usage on the Acoustic Sensor while per-
forming coding and decoding using the Opus
codec. The measurements are performed for six
different audio bitrates and six frame durations.
In all cases the CPU operation remains between
35% and 57%. Highest CPU usage is recorded
for the smallest frame size value (2.5ms). For
all frame sizes between 10ms and 60ms the CPU
usage stays on the same levels. The influence of
audio bitrate on CPU processing is not signifi-
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Figure 8: CPU usage for different values of bi-
trate and frame-size.

cant as changing the bitrate from 64 kbit/s to
320 kbit/s increases the CPU usage by 7% on
average. The complexity parameter of the Opus
codec has a stronger influence on the CPU pro-
cessing than audio bitrate change. Changing
the complexity from 0 to 3 increases the CPU
usage by 10% on average. Switching from 3 to 6
adds another 10% of CPU processing. It is rec-
ommended to set the complexity on 3 or lower
in order to keep the CPU usage below the level
of 50%. From the energy efficiency point of view
the optimal frame size is equal to 10ms.
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Figure 9: Streaming delay measurements with
a distance of 1m between devices.

Audio encoding and decoding adds a signif-
icant delay in the audio processing pipeline of
the AudioSense system. The third factor that
adds an additional delay is audio streaming
over the wireless channel. In order to mea-
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Figure 10: Streaming delay measurements with
a distance of 6m between devices.
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Figure 11: Streaming delay measurements with
a distance of 10m between devices.

sure streaming latency over Wi-Fi several exper-
iments are performed using the prototype Au-
dioSense system.

All the tests are made with the same param-
eters of the Opus codec: sampling rate 48kHz,
bitrate 128 kbit/s, complexity 0, frame size
10ms. Figure 9 presents the first set of exper-
iments where the network consists of one, two
or three Acoustic Sensors (AS). In all cases the
distance between the 3D Audio Processing Unit
and Acoustic Sensors is equal to 1m. The mea-
surements are taken over 2000 audio samples.
The streaming is performed under Line of Sight
(LOS) conditions using the 802.11 n mode. It
is clearly visible in Figure 9 that the streaming
delay is the lowest (around 70µs) when there is
only one Acoustic Sensor in the network. Ad-
dition of the second sensor that sends simulta-
neously audio data to the processing unit in-

creases significantly the overall packets delivery
time to around 1ms on average. The network
with three Acoustic Sensors increases the delay
even further to around 1.6ms.

Figures 10 and 11 show the results of the
same experiment as above but under different
network conditions. The distance between the
devices is increased to 6m and 10m respectively.
The streaming is performed under Non Line of
Sight (NLOS) conditions. The results demon-
strate that the increase in distance between de-
vices has small influence on the average audio
streaming delay. The average delay for packet
reception remains at the same levels in all three
sets of tests. The main difference can be noticed
in the jitter levels which are much higher when
using the system in NLOS conditions.

5 Conclusions

This paper presents the architecture of the Au-
dioSense system which is designed to record and
process spatial audio. All the hardware and
software components of the prototype imple-
mentation of the system are described in de-
tail. The result of the work is a wireless acous-
tic sensor network capable of distributed sound
recording in an object-based audio format.

The paper focuses also on the development
of a low delay audio streaming technique which
meets the strict requirements of the AudioSense
system. For this purpose the Gstreamer frame-
work is utilised together with the Opus codec.
The optimal working parameters for the codec
are selected through experimental evaluation
and the end-to-end delay is measured for dif-
ferent setups of the wireless network. The re-
sults demonstrate that it is possible to achieve
an average delay below 10ms for coding, trans-
mission and decoding of the audio signal in a
wireless system of several Acoustic Sensors.

For the future work it would be interesting
to test the system on a larger scale with paral-
lel transmissions from many Acoustic Sensors.
The capacity of the system and transmission de-
lay can be further optimised by utilising wire-
less streaming in the 802.11 ac standard. For
the needs of sound sources separation it will be
beneficial to apply a hardware based synchroni-
sation method which would limit the synchro-
nisation error to several µs.
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Abstract

While brass pedagogy has traditionally focussed on 
sound output, the importance of bodily posture to 
both short-term performance and longer-term injury 
prevention is now widely recognized. Postrum II is a 
Linux-based system for trumpet players that 
performs real-time analysis of posture and uses a 
combination of visual and haptic feedback to try to 
correct any posture issues that are found. Issues 
underpinning the design of the system are discussed, 
the transition from Mac OS X to Ubuntu detailed, 
and some possibilities for future work suggested.
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1 Introduction

Wright [1] notes that while brass instrument
playing involves the combination and coordination
of multiple facets, tone production is relatively
poorly understood and often considered dauntingly
complex. Perhaps as a result of these difficulties,
trumpet pedagogy has traditionally focused on
sound production with little consideration of the
body. As a result, the role of the body of the player
tended either to go unrecognized, or the ability of
the body to intuitively find appropriate techniques
has been assumed [2].

Over time this lack of concerted engagement
with the body has proved problematic; there has
been increasing recognition that bodily posture is
important, not only in terms of sound production
and performance, but also longer-term injury
prevention. For example, Kelly [3], Whitener [2]
and Dornbusch [4] note that poor posture can

degrade respi ra tory func t ion , s tamina ,
embouchure and tone. Others have suggested that
poor posture in trumpet players can lead to back,
shoulder and neck pain [5] [6], and muscular
weakness [4]. Indeed, similar problems have been
identified in other musicians, from pianists to
string players, and a number of clinics established
specifically to deal with musicians’ injuries [7].

As a result, the literature of brass pedagogy has
sought to identify the typical posture problems
found in trumpet players and arrived at a
consensus regarding ideal alignment of the body.
Based on this literature, we introduce a posture aid
that analyzes the posture of a standing or seated
player in real-time and, if necessary, applies
corrective haptic and visual feedback. In
particular, we describe how this system builds on
previous work that utilized haptic feedback only,
and our transition from Mac OS X to Ubuntu
Linux.

2 Optimal Posture

Drawing on the literature of brass pedagogy
described above, three distinct types of posture
issue can be identified (see Figure 1).

Figure 1: Optimal posture (far left) compared to
three common types of posture issue.

 
Within the figure above, the first image (from

left to right) demonstrates optimal posture
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allowing the lungs and ribcage freedom to operate.
The second image shows the head rotated forward,
thereby restricting the flow of air out from the
neck and back of throat. The third image shows
both the head rotated forward and the sternum
collapsed, inhibiting respiration. Finally, the fourth
shows excessive sideways twisting of the body [8].

Of course, not all trumpet players stand; some
adopt a seated playing position. However, the
posture issues experienced are closely related and
pragmatically almost identical to those that occur
while standing. Indeed, Jacobs [1] has referred to a
position that he termed “standing while sitting”
that would provide the best position for the lungs
to function and support the tone of the instrument.

3 System Design

3.1 Previous System and its Discontents

Our previous prototype consisted of a Microsoft
Kinect 3-D camera and Synapse application for
posture analysis, a mapping layer created in the
MaxMSP visual programming environment, and
two 2x2 vibrotactile arrays built around Arduino
microcontrollers [8]. The combination of Kinect
camera, Synapse application and MaxMSP
required that the system run on Mac OS X
(specifically, Mac OS 10.9 on a Macbook Pro).
However, the expense of these underlying
technologies limited the potential to build multiple
instances of the system. This is desirable as it
makes it possible to test the system on several
users simultaneously, or in different locations at
the same time.

3.2 Transition to Ubuntu

The new system supplements simplified haptic
feedback with visual feedback via an ambient
projection. It also adds the ability to capture time-
stamped audio for subsequent analysis. Thus, it
becomes possible to compare posture to sound
output over time. However, perhaps most
significant change, at least in terms of
implementation, is the move from Mac OS to
Ubuntu Linux.

Some elements of this transition are reasonably
straightforward. For instance, the Open Source and
cross-platform Pure Data-extended (Pd-extended)
provides a near like-for-like replacement for the
MaxMSP. Both are derived from the Max family
of languages developed at IRCAM in Paris and
offer similar functionality, to the point that they
even share many object names [9].

3.3 System Overview

The Postrum II system consists of three layers:

• input (camera and audio)
• analysis and mapping
• output (visual and haptic feedback)

3.3.1 Input

A generic USB webcam is initialized as a
video4linux (V4L) device. The [pix_video] object
then is used to grab live video from the V4L
device at a resolution of 640x480 pixels and 30
frames per second (FPS). CD-quality mono audio
is also collected from a microphone via the [adc~]
object, timestamped, and recorded to disk using
the [writesf~] object. As explained in the future
work section of this paper, this data is not yet fully
utilized, but has rich potential. 

3.3.2 Analysis and Mapping

The analysis and mapping layer sits between the
input and output layers and is primarily built in
Pd-extended. Each frame of video is passed into a
real-time analysis sub-patch that implements a
combination of computer vision processes. Firstly,
background subtraction is used to capture a
player-specific reference image of optimal posture
and isolate the player from her surroundings.
Next, the [pix_movement] object creates a black
and white bitmap of the difference between an
average of the most recent frame and the reference
image (an average of several frames can be used if
smoothing is required). The difference between
the two highlights areas of the body that have
departed from the optimal posture, and from there
the type of posture issue is identified (based on the
types detailed above), as well as the degree of
deviation from the ideal.

This posture data is converted and then
dispatched as Open Sound Control (OSC)
messages to the feedback layer. The figure below
(Figure 2) outlines the data flow through the
Postrum II system, showing its three distinct
layers.    
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Figure 2: Flow diagram of the main elements of
the Postrum II system

3.3.3 Output

The concept of calm technology was developed
by Weiser and Brown [11]. It concerns the shifting
of interaction to the periphery of attention in an
attempt to reduce information overload. Informed
by this concept, in this research, an ambient visual
display is used to indicate departures from the
optimal posture. When departures from the ideal
are minor or short-lived, the aim is to inform but
not significantly distract the player from other
musical tasks by occupying only the periphery of
their attention (see Figure 3). In particular, a key
design principle is that the visual feedback should
be sympathetic to sight reading; that it should not
require the eyes to be taken off a musical score in
order for it to be processed by the player.

Figure 3: Principle of the visual feedback.

The position and color of the projection around
the periphery indicate the type of posture issue and
its severity. The ambient display is split into five
areas (see Figure 3). Colors range from green
(optimal posture) through to red (severe posture

issue). When the entire display is green the
player’s posture is optimal. The area directly
above the head (A) turning red indicates that the
head has rotated forward; the areas below this (B)
turning red denotes that the sternum has collapsed;
the left or right sides of the display (C) turning red
indicates that the body is twisted to one side or the
other. If optimal posture is not resumed within a
few seconds, a second state is entered. In this
state, visual feedback remains but is progressively
supplemented by haptic feedback to more
concertedly attract the attention of the user. The
amplitude of the haptic feedback is proportional to
the extent and duration of the postural deviation.

Figure 4: Visual feedback in Postrum II.

The visual feedback component is implemented
in the open source Processing programming
language. It is displayed on a large television
screen or, preferably, projection onto the wall of
the practice room. Compared to the first Postrum
system, the haptic feedback component is greatly
simplified. It consists of a single 2.5cm vibration
motor mounted on the torso (just above the waist)
using a soft and elastic band. It is controlled by an
Arduino microcontroller via a simple H-bridge.
The Arduino in turn connects to the host computer
via a wired USB connection. The amplitude of the
vibration motor is able to be continuously varied
by means of pulse-width modulation.

3.4 Related Work

Our earlier system aside [8], to the best of our
knowledge, previous posture aids aimed
specifically at brass players have been passive
mechanical devices only. The Shulman System for
Brass [13] rests on the sternum and holds the
trumpet in an optimal position in front of the
player. The ERGObrass [14] supports the weight
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of the instrument on a rod attached to the floor or
to the player’s belt, thereby freeing up the arms,
shoulders, and upper body.

Work more similar to ours exists in other
musical domains. For instance, the Music Jacket
[15] is a wearable, real-time system for novice
violin players that uses a camera to track the
position of the bowing arm and haptic feedback to
“nudge” the player into adopting good posture
habits. The Integrated Vibrotactiles interface [16]
is also aimed at violinists. In a similar manner to
the Music Jacket, it provides the player with real-
time haptic feedback that aims to foster good
movement and posture within a 3-D space.

4 Discussion and Future Work

The Postrum II solves some of the design issues
identified in our first prototype. In particular, it
attempts to reduce the cognitive demands placed
on the player when only minor postural deviations
are identified, and thus impinge less on the ability
to carry out attention-heavy musical tasks.

At present, Postrum II uses a standard Ubuntu
distribution. It would be interesting to compare its
performance and ease of use to that of a
specialized audiovisual variant. It would also be a
relatively small step from our current system to
one that is able to run on the Raspberry Pi single
board computer (SBC). This would not only
further reduce the cost of the system, but enable
the technology to “disappear” into, or be hidden
inside, the fabric of the practice room. 

A particularly interesting possibility for future
work lies in comparing posture data and the
(recorded) sound output of the instrument to look
for correlation between the two. Another
possibility concerns studying the effects of
tiredness and fatigue on the posture of expert
trumpet players. While these players may usually
initially present with good posture, the effect of
long (and potentially tiring) practice sessions has
so far been little explored.
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Abstract

With the advent of both HTML5 and the Web Audio
API (a high-level JavaScript API for audio process-
ing and synthesis) interesting audio applications can
now be developed for the Web. The Web Audio API
offers a set of fast predefined audio nodes as well as
customizable ScriptProcessor node, allowing devel-
opers to add their own javascript audio processing
code.

Several projects are developing abstractions on
top of the Web Audio API to extend its capabilities,
and offer more complex unit generators, DSP effects
libraries, or adapted syntax. This paper brings an-
other approach based on the use of the Faust audio
DSP language to develop additional nodes to be used
as basic audio DSP blocks in the Web Audio graph.

Different methods have been explored: going from
an experimental version that embeds the complete
Faust native compilation chain (based on libfaust
+ LLVM ) in the browser, to more portable solu-
tions using JavaScript or the much more efficient
asm.js version. Embedding the Faust compiler it-
self as a pure JavaScript library (produced using
Emscripten) will also be described.

The advantages and issues of each approach will
be discussed and some benchmarks will be given.

Keywords

Web Audio API, Faust, Domain Specific Language,
DSP, real-time

1 Introduction

This paper demonstrates how an efficient com-
pilation chain from Faust to the Web Audio
API can be done, allowing the available Faust
programs and libraries to be immediately used
in a browser.

Section 2 describes the Web Audio API and
how it can be extended and targeted by Domain
Specific Languages. Section 3 describes the
Faust language and its mechanisms to be de-
ployed on a large variety of platforms. Section 4
exposes the compilation chain and the multiple
target languages available from a unique DSP
specification. In the context of the Web Audio

API, section 5 presents the different approaches
experimented to deploy Faust DSP programs on
the Web. Section 6 exposes some use cases, and
finally some results and benchmarks are given
in section 6.1.

2 Programming audio in the Web

2.1 Web Audio API

The Web Audio API [12] specification describes
a high-level JavaScript API for processing and
synthesizing audio in Web applications. The
conception model is based on an audio routing
graph, where a number of AudioNode objects
are connected together to program the global
audio computation.

The actual processing is executed in the un-
derlying implementation 1 for native nodes, but
direct JavaScript processing and synthesis is
also supported using the ScriptProcessorNode.

2.2 Native nodes

The initial idea of the specification is to give de-
velopers a set of highly optimized native nodes,
implementing the commonly needed functions:
playing buffers, filtering, panning, convolution
etc. The nodes are connected to create an au-
dio graph, to be processed by the underlying
audio real-time rendering layer.

2.3 JavaScript ScriptProcessorNode

The ScriptProcessorNode interface allows the
generation, processing, or analyzing of audio
using JavaScript. It is an AudioNode audio-
processing module that is linked to two buffers,
one containing the input audio data, one con-
taining the processed output audio data.

An event, implementing the AudioPro-
cessingEvent interface, is sent to the object each
time the input buffer contains new data, and the
event handler terminates when it has filled the
output buffer with data.

1typically optimized assembly or C/C++ code
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This is the hook given to developers to add
new low level DSP processing capabilities to the
system.

2.4 Programming over the Web Audio
API

Various JavaScript DSP libraries or musical lan-
guages, have been developed over the years ([4],
[6], [8], [10]) to extend, abstract and empower
the capabilities of the official API. They offer
users a richer set of audio DSP algorithms and
sound models to be directly used in JavaScript
code.

When following this path, developments have
to be restarted from scratch, or by adapting
already written code (often in more real-time
friendly languages like C/C++) into JavaScript.

An interesting alternative has recently been
developed by the Csound team [11]: by using
the C/C++ to JavaScript Emscripten [3] com-
piler, the complete C written Csound runtime
and DSP language (so including a large number
of sound opcodes and DSP algorithms) is now
available in the context of the Web Audio API.
Using an automatic C/C++ to JavaScript com-
pilation chain opens interesting possibilities to
ease the deployment of well-known and mature
code base on the Web.

3 FAUST language description

Faust [Functional Audio Stream] [1] [2] is a
functional, synchronous, domain-specific pro-
gramming language specifically designed for
real-time signal processing and synthesis. A
unique feature of Faust, compared to other ex-
isting music languages like Max2, PureData, Su-
percollider, etc., is that programs are not inter-
preted, but fully compiled. Faust provides a
high-level alternative to hand-written C/C++
to implement efficient sample-level DSP algo-
rithms.

One can think of Faust as a specification
language. It aims at providing the user with
an adequate notation to describe signal pro-
cessors from a mathematical point of view.
This specification is free, as much as possible,
from implementation details. It is the role of
the Faust compiler to automatically provide
the best possible implementation. The com-
piler translates Faust programs into equivalent

2the gen object added in Max6 now creates compiled
code from a patch-like representation, using the same
LLVM based technology

C++ programs3 taking care of generating the
most efficient code. The compiler also offers
various options to control the generated code,
including options to do fully automatic paral-
lelization and to take advantage of multicore
architectures.

From a syntactic point of view Faust is a tex-
tual language, but nevertheless block-diagram
oriented. It actually combines two approaches:
functional programming and algebraic block-
diagrams. The key idea is to view block-diagram
construction as function composition. For that
purpose, Faust relies on a block-diagram alge-
bra of five composition operations (: , ˜ <: :>)
[1].

Here is an example of how to write a noise
generator in Faust:

random = +(12345)˜∗(1103515245) ;
n o i s e = random /2147483647 .0 ;
p r o c e s s = no i s e

∗ v s l i d e r (”Volume ” , 0 , 0 , 1 , 0 . 1 ) ;

3.1 Language deployment

Being a specification language, the Faust code
tells nothing about the audio drivers or the GUI
toolkit to be used. It is the role of the architec-
ture file to describe how to relate the DSP code
to the external world. Additional generic code
is added to connect the DSP computation it-
self to audio inputs/outputs, and to control pa-
rameters, which could be buttons, sliders, num
entries etc. in a standard user interface, or any
kind of control using a remote protocol like OSC
or HTTP.

This approach allows a single Faust program
to be easily deployed to a large variety of audio
standards (Max-MSP externals, PD externals,
VST plugins, CoreAudio or JACK standalone
applications, etc.).

4 FAUST compilation chain

4.1 Static compilation chain

The current version of the Faust compiler
(faust1) produces DSP code as a C++ class, to
be inserted in an architecture file. The resulting
file is finally compiled with a regular C++ com-
piler to obtain an executable program or plug-in
(Figure 1).

The produced application is structured as
shown in Figure 2. The DSP becomes an audio
computation module linked to the user interface
and the audio driver.

3In faust1, faust2 branch allows to compile for differ-
ent languages
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Figure 1: Steps of Faust compilation chain

Figure 2: Faust application structure

4.2 Multiple backends

Faust2 development branch uses an intermedi-
ate FIR representation (Faust Imperative Rep-
resentation), which can be translated to several
output languages.

The FIR language describes the computation
performed on the samples in a generic manner.
It contains primitives to read and write vari-
ables and arrays, do arithmetic operations, and
define the necessary control structures (for and
while loops, if structure etc.). The language of
signals (internal to the Faust compiler) is now
compiled in FIR intermediate language.

To generate various output languages, several
backends have been developed: for C, C++,
Java, JavaScript, asm.js, and LLVM IR (Figure
3). The native LLVM based compilation chain
is particularly interesting: it provides direct
compilation of a DSP source into executable
code in memory, bypassing the external com-
piler requirement.

4.3 LLVM

LLVM (formerly Low Level Virtual Machine) is
a compiler infrastructure, designed for compile-
time, link-time, run-time optimization of pro-
grams written in arbitrary programming lan-
guages. Executable code is produced dynami-
cally using a “Just In Time” compiler from a
specific code representation, called LLVM IR.
Clang, the “LLVM native” C/C++/Objective-
C compiler is a front-end for LLVM Compiler.

Figure 3: Faust2 compilation chain

It can, for instance, convert a C or C++ source
file into LLVM IR code.

Domain-specific languages like Faust can
easily target the LLVM IR. This has been done
by developing a special LLVM IR backend in
the Faust compiler.

4.4 Dynamic compilation chain

The complete chain goes from the DSP source
code, compiled in LLVM IR using the LLVM
back-end, to finally produce the executable code
using the LLVM JIT [5]. All steps take place in
memory, getting rid of the classical file based
approaches. Pointers to executable functions
can be retrieved from the resulting LLVM mod-
ule and the code directly called with the appro-
priate parameters (Figure 4).

Figure 4: libfaust + LLVM dynamic compila-
tion chain

4.5 FAUST compiler as a library

In the faust2 development branch, the Faust
compiler has been packaged as a library called
libfaust, published with an associated API [5]
that imitates the concept of oriented-object lan-
guages, like C++:

• given a Faust source code (as a file or a
string), calling the createDSPFactory func-
tion runs the compilation chain (Faust +
LLVM JIT) and generates the “prototype”
of the class, as a llvm-dsp-factory pointer.

• next, the createDSPInstance function, cor-
responding to the new className of C++,
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instantiates a llvm-dsp pointer, to be acti-
vated and controlled through its interface,
and connected to the audio drivers.

Having the compiler available as a library
opens new interesting possibilities explored in
the FaustLive [9] application. DSP source code
can be compiled on the fly and will run at native
speed.

5 Using FAUST compiler in the Web

We have tested and implemented two different
methods to use the Faust compilation chain in
the Web:

• the first one consists in embedding the lib-
faust + LLVM native compilation chain di-
rectly in the browser. Starting from the
Faust DSP source, a native WebAudio
node will be compiled on the fly, to be used
like any regular native node. The set of all
control parameters will be exposed as We-
bAudio AudioParams objects.

• an alternative and more portable method
purely stays at JavaScript level, using
asm.js and Emscripten. Starting from the
Faust DSP source, a highly optimized
asm.js based ScripProcessor node will be
produced. The set of all control param-
eters will be exposed to control the DSP
node.

Both approaches have advantages and issues
that will be explained in detail in the following
sections.

5.1 Native FAUST DSP Web Audio
node

Embedding the libfaust + LLVM compilation
chain has been experimented by “hacking” the
WebKit open-source browser and by plugging
the Faust compiler in its Web Audio sub-
project.

A new native C++ FaustNode (sub-class of
base class AudioNode) has been added to the
set of native Web Audio nodes4. This node
takes the DSP source code as a string parame-
ter, compiles it on the fly to native executable
code, and activates it:

va r dsp
= con t e x t . c r ea teFaus tNode ( code ) ;

4This work was done in summer 2012 with the gen-
erous help of Chris Rogers, working at Google at that
time.

As a native node, it can be used like any other
regular native node and connected to other
nodes in the graph:

dsp . connect ( c on t e x t . d e s t i n a t i o n ) ;

The Faust source code usually contains
an abstract description of its user interface,
described in terms of buttons, sliders, bar-
graphs..., to be “interpreted” and displayed
by an actual user interface builder component.
This user interface can be obtained as a JSON
description, that can be decoded to implement
the UI themselves to control the node’s param-
eters:

va r j s o n = dsp . j s o n ( ) ;

Internal control parameters of the DSP can be
retrieved as a list of AudioParams, to be used
like regular ones:

va r num params
= dsp . numberOfAudioParams ( ) ;

va r aud io param
= dsp . getAudioParam ( 0 ) ;

aud io param . s e tVa l u e ( 0 . 5 ) ;

Instead of directly accessing the given param-
eter, another possibility is to use the follow-
ing generic function, taking a complete access
“path” to the parameter, and a given value:

dsp . setAudioParamValue (”/ wet ” , 0 . 5 ) ;

Embedding the Faust compiler in a browser
is quite efficient, since the native executable
code runs in the real-time audio thread that
computes the audio graph rendering. But more
general deployment and acceptance would re-
quire convincing the Web Audio community to
embed a DSL language for audio processing in
all browsers.

5.2 Compiling to JavaScript

More portable solutions have to use the
ScriptProcessorNode node, directly producing
JavaScript code to be executed in the node.

5.2.1 JavaScript backend

A pure JavaScript backend has been added to
Faust in 2012 to produce standard JavaScript
code. The DSP class definition is then wrapped
with a generic JavaScript file in order to get a
fully working Web Audio ScriptProcessorNode.

5.2.2 Results

Two main problems have been discovered with
this approach:
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• for some of its computations, the Faust
compiler relies on pure 32 bits integral
mathematical operations. Since JavaScript
stores numbers as floating-point values ac-
cording to the IEEE-754 Standard, this
kind of computation can’t produce the ex-
pected result. Thus, some DSP effects (like
noise generation that uses a wrapping 32
bits integer division) do not work correctly.

• since standard JavaScript is not really
suited to implement fast DSP code, the
generated program is significantly slower
compared to the native C/C++ or LLVM
versions. The resulting audio nodes are us-
able only when the programmed DSP code
is simple enough, but more demanding al-
gorithms (like physical models) can usually
not be used.

5.3 Compiling to asm.js JavaScript

Started in 2011 to facilitate the port of large
C/C++ code base in JavaScript, Mozilla de-
velopers have started the Emscripten compiler
project, based on LLVM technology, that gen-
erates JavaScript from C/C++ code.

Later on, they designed asm.js, a completely
typed subset of JavaScript, statically compil-
able, garbage-collection free, that can be highly
optimized by the compilation chain embedded
in recent Web browsers. It is then possible to
reach performances similar to pure native code5

Mainly designed to manipulate simple types
like floating point or integer numbers, asm.js
language is particularly of interest for audio
code. Two successive developments have been
carried out with this approach.

5.3.1 Using Emscripten compiler

Starting from the Faust DSP generated C++
class, the Emscripten compiler translates it to
JavaScript. Additional wrapping JavaScript
code connects the Emscripten runtime mem-
ory manager and makes the generated code be-
come a ScriptProcessorNode node to be used in
the audio graph (Figure 5). This method has
been successfully developed and demonstrated
by Myles Boris [7].

Although this approach performs rather well,
it requires the Emscripten tool chain to be in-
stalled on the user machine. A more integrated
system has been later on developed.

5In the best cases, asm.js code is said to be only 2
or 3 times slower than pure native code, see http://
kripken.github.io/mloc_emscripten_talk

Figure 5: Faust to asm.js (using Emscripten)
static compilation chain

5.3.2 Developing a direct asm.js
backend

A pure asm.js backend has been added to the
faust2 branch, bypassing the Emscripten com-
pilation chain (Figure 6).

The backend produces the asm.js module as
well as some additional helper JavaScript func-
tions, to be wrapped by generic JavaScript to
become a completely usable Web Audio node.
Heap memory code to be used with the asm.js
module, and connection with compiled helper
functions is managed by the wrapping code.

Figure 6: Faust to asm.js (using FIR backend)
static compilation chain

A new DSP instance is created using the fol-
lowing code, taking the Web Audio context and
a given “buffer size” as parameters:

va r dsp
= f a u s t . k a r p l u s ( contex t , b u f f e r s i z e ) ;

The user interface can be obtained as a JSON
description, that can be decoded to implement
the UI themselves to control the node’s param-
eters:

va r j s o n = dsp . j s o n ( ) ;

The instance can be used with the following
code:

dsp . s t a r t ( ) ;
dsp . connect ( c on t e x t . d e s t i n a t i o n ) ;
dsp . s e tVa l u e ( p a t h t o c o n t r o l , v a l ) ;

5.4 Embedding the JavaScript FAUST
compiler in the browser

Thanks to the Emscripten compiler, the Faust
compiler itself can be compiled to asm.js
JavaScript. This has been done by compil-
ing the libfaust C++ library to the libfaust.js
JavaScript library (Figure 7), that exports a
unique entry point:
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Figure 7: Compiling C++ libfaust to libfaust.js
with Emscripten

• createAsmCDSPFactoryFromString(...)
allows to create a DSP factory from a
given DSP program as a source string
and a set of compilations parameters,
uses the asm.js backend, and produces the
complete asm.js module and additional
pure JavaScript methods as a string.

• then calling JavaScript “eval” function on
this string compiles it in the browser. The
dynamically created asm.js module and ad-
ditional pure JavaScript methods (Figure
8) can then be used.

Figure 8: libfaust.js + asm.js dynamic compila-
tion chain

This internal code in then wrapped with ad-
ditional JavaScript code. A DSP “factory” will
be created from the DSP source code with the
following code:

va r f a c t o r y
= f a u s t . c reateDSPFactory ( code ) ;

A fully working DSP “instance” as a Web Au-
dio node is then created with the code:

va r dsp
= f a u s t . c r ea t eDSPIn s tance ( f a c t o r y ,

contex t ,
b u f s i z e ) ;

The user interface can be retrieved as a JSON
description:

va r j s o n = dsp . j s o n ( ) ;

The instance can be used with the following
code:

dsp . s t a r t ( ) ;
dsp . connect ( c on t e x t . d e s t i n a t i o n ) ;
dsp . s e tVa l u e ( p a t h t o c o n t r o l , v a l ) ;

6 Use cases

Using the previously explained technologies,
three different use cases have been experi-
mented:

• compiling self-contained ready to use Web
Audio nodes (see section 6.1)

• using Faust static compilation chain to
produce HTML pages with DSP code (see
section 6.2)

• using the Faust dynamic compilation
chain to directly program DSP in the Web
(see section 6.3).

6.1 Programming Web Audio nodes
with FAUST

Self contained ready to use Web Audio nodes
can be produced using the faust2asmjs script,
using the static compilation chain explained in
section 5.2. The script basically calls the Faust
compiler targeting the asm.js backend with the
appropriate architecture file, that wraps the
produced code with generic JavaScript to be us-
able in the Web Audio API context (Figure 9).

Figure 9: faust2amsjs and faust2webaudioasm
compilation chains

6.2 Deploying FAUST DSP examples
in the Web

Using the faust2webaudioasm script, a DSP
source file can be compiled to a self-contained
ready to run HTML page (Figure 10), using
the static compilation chain (see section 5.2 and
Figure 9).

The Faust compiler targeting the asm.js
backend with the appropriate architecture file
is called. The asm.js + JavaScript WebAu-
dio node is then wrapped in a more complex
HTML code template, and the final HTML page
is obtained. Adding the -links parameter to the
script makes the HTML page also contains links
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to the original DSP textual file, as well as the
block-diagram SVG representation.

Thus it becomes quite simple to publish DSP
algorithms, helping it wider usage of the Faust
DSL approach.

Figure 10: Example of SVG based user interface
generated from the JSON description

6.3 Programming DSP in the Web

Having the Faust compiler itself as a library in
the browser opens interesting capabilities:

• “light” Faust IDE allowing users to test
the language can be easily developed on
the Web, completing the more full featured
FaustLive application [9].

• combining existing DSP sources published
as HTML pages, to create new DSP pro-
grams to be directly tested and used in the
Web, or possibly exported to any native
platform supported by the FaustWeb ex-
ternal compilation service. This has been
demonstrated by Sarah Denoux [13].

7 Tests and benchmarks

The three previously described approaches have
been tested on a 4 cores MacBook Pro 2,3 GHz.

7.1 Benchmarks

The Web Audio API is still a fresh specifica-
tion. Its implementation in different browsers
on different platforms is not always complete
or stable. Comparing the previously described
approaches has been quite challenging, mainly
because of slight differences of behavior or inter-
action with the underlying operating system.

The proposed benchmarks have been done by
simply comparing the application CPU use with
some heavy Faust programs, using the ”Activ-
ity Monitor” tool included in OSX. Three dif-
ferent DSP programs have been tested.

Since the various presented methods could
not be developed in a same browser, we had to
use two different ones. Native version is tested
in the “hacked” WebKit application, JavaScript
and asm.js using Firefox version 32.0.3.

Effect native JavaScript asm.js
cubic distortion 6.0 % 45 % 28 %
harpe 2.7 % 50 % 8 %
kisanaWD 4 % over 100% 14 %

Table 1: Global CPU use of the application
tested on a MacBook Pro 2,3 GHz

Even with this limited testing method, some
interesting results emerge. The native chain
(based on libfaust + LLVM ) is clearly the
fastest, the asm.js based one is usable in a lot
of real world use cases. The JavaScript ver-
sion performs poorly, and is even not usable be-
cause of CPU overuse in a lot of examples (like
“kisanaWD” here).

7.2 Known issues and perspective

Although the previously described develop-
ments show some promising results, they are
still several issues to be solved:

• code for pure JavaScript and asm.js gener-
ated nodes is executed in the main thread.
So it may suffer from interferences with the
UI computation or possibly garbage collec-
tion. Moreover latency is added since an
additional buffer is used in the audio chain.
Thus real-time guaranties may not be met
typically resulting in audio glitches 6.

• a specific problem has been discovered
when audio computation produces “denor-
mal” float values: on Intel processors, CPU
performances degrade a lot 7.

• on the contrary, the “native” version is
much more stable, has less latency since
the computation is done in the real-time
thread with no added buffer, but is much
more difficult to deploy and maintain 8.

6A possible solution to this problem by moving the
ScriptProcessorNode code in audio worker threads has
been recently discussed in the W3C Audio working list,
see http://webaudio.github.io/web-audio-api

7The problem has been reported and should be solved
at the JavaScript language definition level.

8A port in Firefox is in progress.
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8 Conclusion

The Faust audio DSP language can now be
used to easily develop new audio nodes in the
Web Audio model, and use them in an audio
graph. Complete HTML pages with a working
user interface can also be generated. Having the
dynamic compilation chain (either in native or
pure JavaScript mode) directly available in the
browser is also interesting to further explore.

Even if the Web Audio approach starts to
mature, there are still some problematic issues,
for instance float samples denormalization prob-
lem, or non real-time guaranties while rendering
the ScriptProcessorNode JavaScript code.

The recent discussion on the Audio Workers
model opens perspectives for a better render-
ing scheme. Basically the JavaScipt audio code
will be moved to the real-time audio thread,
and communications to get/set parameter val-
ues will be done from/to the main thread.

It remains to be tested how the compilation
of DSP to Web Audio nodes from a high-level
DSL language like Faust or Csound will benefit
from it.

Acknowledgments
This work has been done under the FEEVER
project [ANR-13-BS02-0008] supported by the
“Agence Nationale pour la Recherche”.

References

[1] Y. Orlarey, D. Fober, and S. Letz, “Syntac-
tical and semantical aspects of Faust”, Soft
Computing, 8(9), 2004, pp. 623–632.

[2] S. Letz, Y. Orlarey and D. Fober, “Work
Stealing Scheduler for Automatic Paral-
lelization in Faust”, Linux Audio Confer-
ence, 2010.

[3] A. Zakai, “Emscripten: an LLVM to
JavaScript compiler”, In Proceedings of the
ACM international conference companion
on Object oriented programming systems

languages and applications, pages 301–312.
ACM , 2011.

[4] H. Choi, J.Berger, “Waax: Web Audio API
extension”, In Proceedings of the Thirteenth
New Interfaces for Musical Expression Con-
ference., 2013.

[5] S. Letz, Y. Orlarey and D. Fober, “Com-
ment embarquer le compilateur Faust dans
vos applications ?”, Journees d’Informatique
Musicale, 2013.

[6] C. Roberts, G. Wakefield, and M. Wright,
“The Web Browser as Synthesizer and Inter-
face”. New Interfaces for Musical Expression
conference (NIME), 2013.

[7] M. Borins, “From Faust to Web Audio:
Compiling Faust to JavaScript using Em-
scripten”, Linux Audio Conference, 2014.

[8] C. Clark, A. Tindale, “Flocking: a frame-
work for declarative music-making on the
Web”, International Computer Music Con-
ference, 2014.

[9] S. Denoux, S. Letz, Y. Orlarey and D.
Fober, “FAUSTLIVE Just-In-Time Faust
Compiler... and much more”, Linux Audio
Conference, 2014.

[10] J. Kalliokoski, “audiolib.js, a powerful
toolkit for audio written in JS”, https:
//github.com/jussi-kalliokoski/
audiolib.js/

[11] V. Lazzarini, E. Costello, S. Yi and J.
Fitch, “Csound on the Web”, Linux Audio
Conference, 2014.

[12] WebAudioAPI reference descrip-
tion, http://webaudio.github.io/
web-audio-api/

[13] S. Denoux, Y. Orlarey, S. Letz, and D.
Fober, “Compose with Faust in the Web”,
Web Audio Conference, IRCAM & Mozilla
Paris, France 2015.

36



AVTK - the UI Toolkit behind OpenAV Software

Harry VAN HAAREN
OpenAV Productions,

Co. Clare,
Ireland.

harryhaaren@gmail.com

Abstract

AVTK[1] is a small lightweight user interface toolkit
designed for building custom graphical user inter-
faces interfaces. It was conceived particularly to
build LV2 plugin GUIs, however it can be equally
useful in standalone programs.

Focusing on user experience, AVTK promotes
ease of use for novices yet affords power-users the
most efficient interactivity as possible.

The author feels this is particularly important
in live-performance software, where user-experience
and creativity are in close proximity.
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1 Introduction

AVTK is a C++ user interface library. It is
designed specifically for creating LV2 plugins[2],
but can be used to build normal user interfaces
too. OpenAV created AVTK out of the need for
a flexible and powerful way of creating custom
user interfaces for audio plugins.

In the background section, common issues
when building user interfaces for plugins are
presented. The implementation of the AVTK
user interface library is then shown, and code
samples are provided, providing an example of
how to build a minimal interface. Finally we
discuss how the common problems presented in
the background are solved in this implementa-
tion.

2 Background

When creating an embeddable user interface for
a plugin, issues arise that do not apply to writ-
ing normal user interfaces. These issues arise
from the interaction between the user interface
of the host program and plugin.

2.1 Embedding

Embedding is the process of showing a user in-
terface created in one toolkit inside the window
of another toolkit. This is a complex problem

and many different solutions exist. Many so-
lutions are platform dependant, ie: they only
work on Linux, Mac OsX or Windows.

PUGL[3] is a cross platform library which
“supports embedding and is suitable for use in
plugins”. AVTK uses PUGL to embed into host
program’s windows, and it can create a stan-
dalone window too if embedding isn’t desired.

2.2 Modal Popup Windows

Many general purpose toolkits have the func-
tionality to create modal popup windows. This
type of window can cause problems when em-
bedding a plugin UI in a host window.

The first problem is that the popup is set
to be “above” its parent window, however the
parent window is generally already set to be
“above” the host program. This can cause the
popup window to be below the parent window,
however modal popup windows don’t allow the
user to interact with the parent. The user is
force to manually bring the popup window to
the front, and interact with it. This has a neg-
ative impact on the user experience (UX).

The second problem is one of stalling the UI
thread of the host program. When a modal
popup dialog is created, many user interface
toolkits wait for the user to interact with it,
before continuing the execution. This stalls the
host programs UI thread, as that thread cre-
ated the dialog. The end result is that as the
popup window is shown, the host programs UI
is frozen. Again, a negative impact on UX.

2.3 User Experience

When using a plugin user interface, user experi-
ence is of very high importance. In the context
of AVTK, the user is most likely creating music,
or involved in a creative process of some descrip-
tion. To ensure the best UX for both novice and
power users, the normal user interaction con-
cepts are augmented in AVTK. Care is taken to
ensure that these augmented interaction possi-
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bilities do not cause confusion to novice users.
Transparently augmenting the interaction

with a widget provides power users with better
UX, and ultimately in the user achieving their
goal more efficiently. The scroll wheel on the
mouse, and modifiers keys are used in order to
augment the interface for efficency.

3 The Implementation

The implementation of AVTK draws from ex-
perience gained while developing custom inter-
faces using other toolkits.

The main window is treated as one large can-
vas, and widgets are drawn into this canvas. As
widgets can be transparent, creating layered in-
terfaces becomes easy.

3.1 Dependencies

During the design stage cross-platform libraries
were chosen, in order to ensure portability.
Cairo[4] is used for all drawing routines, while
PUGL provides access the window and input
events. PicoJSON[5] is used for parsing JSON,
while tinydir[6] provides access to the filesys-
tem.

3.2 Widget Class

The Widget class is the core of AVTK. The
Widget class has virtual functions that a devel-
oper can override to customize behaviour. The
following is an excerpt of the Widget class:

Listing 1: Widget Class
class Widget
{
public:

Widget( Avtk::UI* ui,
int x,
int y,
int w,
int h,
string label );

// draw and handle events
virtual void draw(cairo_t* cr);
virtual int handle(PuglEvent* e);

// set value on widget
float value ();
void value( float v );

// change notification callback
void (* callback )( Widget*, void *);
void* callbackUD;

};

The most important function is draw(), which
paints the widget to screen. The handle()
function deals with user input using the cross-
platform PuglEvent abstraction.

The value() functions set and get the value
of the widget. A callback function can be pro-
vided to be notified of activity on a particular
widget instance.

3.3 Minimal UI

The code in listing 2 shows a minimal AVTK
user interface with a single button. Notice that
we override the widgetValueCB()function, and
that the callback function of any child widgets
is automatically routed to the UI instance.

Listing 2: Minimal Demo UI
class DemoUI : public Avtk::UI
{

public:
DemoUI(PuglNativeWindow parent = 0) :

Avtk::UI( 400, 240, parent )
{

new Avtk:: Button( this ,
50, 20, 300, 200, "Button" );

}

void widgetValueCB(Avtk:: Widget* wid)
{

printf("Widget %s with value %f\n",
wid ->label(), wid ->value () );

}
};

int main()
{

return DemoUI (). run ();
}

3.4 Custom Widget Creation

In order to customize a widget one simply de-
rives from the Widget base class, and overrides
the draw() method. The Cairo library is used
to draw widgets, and a cairo t* context is
passed into the draw() function. Calling the
desired Cairo functions will draw the widget.

The value() function of the Widget base
class can be called to get the current value of
the widget - allowing easy drawing of the wid-
get in its current state.

The handle() function can be overriden in
case the custom widget requires non-default
user input handling.

3.5 Modal Widgets

Modal popups are implemented as a popup wid-
get, instead of its own window in AVTK. This is
to keep UX consistent, and avoid the pitfalls of
modal windows as described in the background
section.

As the calling thread should not be stalled
while the popup is shown, AVTK treats a popup
widget like a normal widget. The exception is
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Figure 1: The Fabla2.0 interface, powered by AVTK. Edited for print.

event handling, which allows the modal wid-
get to disable interaction with the other widgets
while it is shown.

Figure 2 shows two user interfaces one of
which has a modal dialog shown. Note the dia-
log is positioned close to the cursor for ease of
interacting with it.

3.6 Theming

The theme engine in AVTK is geared towards
providing a variety of themes to a widget, and
being able to change them on the fly. Themes
are loaded from JSON files at runtime, allowing
easy modification.

Theme files provide colours for “use-cases”.
Some examples are background, foreground,
background-dark etc. This approach allows us-
ing the same theme file on any widget, and the
widget adapts the colours in the theme to what
is being drawn. This lightweight approach to
themeing allows fast prototyping, and scales to
having many different themes available for each
widget.

Fig. 1 shows an interface, and various wid-
gets themed to show the user the effect of the
widget in question. In this particular screen-
shot changing the “Bank” changes the primary
colour of the interface, indicating the change to
the user.

4 Special Features

This section describes special features of AVTK.
The interaction between the power user and the
interface is where the design of AVTK flour-
ishes. Many widgets afford operation with
hotkeys, right-clicks and drag-n-drop areas.

The following sections discuss where the inter-
action between user and interface has been aug-
mented.

4.1 Right Click and Default Values

User input from the mouse buttons is leveraged
in almost every widget in order to allow effi-
cient resetting of controls. Any Widget that
uses its value() is enabled with a right-click
feature to reset to the default value. Calling
defaultValue() sets a new default value for
the widget.

Right-click to reset to default value can
be disabled, using the Widget::rClickMode()
function.

4.2 Groups and Scroll events

Groups can be used to provide radio-button
style selection of a particular widget in the
group (see Fig 2. for widget examples).

This is particularly useful in scrollable areas,
which are commonly used in applications to se-
lect a particular option from a range of pre-
determined options.

Using input from the scroll wheel is an intu-
itive mapping - but there is a conflict when a
Group is in a Scroll widget as the Scroll wid-
get uses the scroll event. In order to achieve
an optimal workflow, a Ctrl+Scroll action is
added to a Group allowing the user to navigate
group.

The efficiency of navigating a widget list
is improved for power users familiar with the
Ctrl+Scroll hotkey, while consistency is main-
tained in how widgets behave regardless of if
they are in a scrollable area or not.
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Figure 2: Showcase of AVTK widgets, a popup Dialog “stripes out” the background.

4.3 Filenames

When the user is searching for a particular au-
dio file in a list of similar files, the filenames
often have an identical start causing long file-
names. This causes a workflow where the user
must scroll horizontally and vertically in order
to select the desired file.

In an attempt to solve the workflow issue as
above, the AVTK file-browser includes an op-
tion to hide the common start of a filename.
And example to illustrate this is as follows:

// Actual Filenames
samplepack_kick_heavy.wav
samplepack_kick_click.wav
samplepack_snare_snappy.wav

// AVTK Filenames
kick_heavy
kick_click
snare_snappy

The example above shows three filenames with
the common prefix samplepack followed by the
information user requires, followed by a filetype
extension.

In this example, the common prefix
samplepack has been removed, and the
extension is removed for readability (It is noted
that many general purpose toolkits already
hide the file extension).

4.4 Testing of User Interfaces

When an issue is found in a program by a user,
often the first step a developer takes is to at-
tempt to reproduce the issue. The user is asked
to describe what steps will reproduce the issue,
and the developer mimics them in order to find
the cause of the issue.

To improve the workflow in finding UI issues,
user input is recorded, and then replayed on the
developer’s computer.

AVTK serializes the input events from the
user to a JSON file, which is uploaded to the
developer. They then replay the events, auto-
matically mimicing the users input.

It should be noted that the developer must
have the same version of the software as the
user as pixel co-ordinates are stored in the event
stream. It follows that if the user interface is
re-arranged, the users actions may no longer
achieve the same result.

5 Conclusion

AVTK is a small lightweight user interface
toolkit, targeting developers who wish to build
custom user interfaces. It solves common issues
other toolkits have when embedding as a plugin
UI by utilizing a more appropriate design for
the use-case.

It has some special features geared towards
power-users, and has a theme engine that allows
developers create prototypes quickly. An event
recording and playback mechanism is included
to aid finding issues users are having with the
software in question.

6 Future Work

OpenAV intends to continue using AVTK to
build interfaces for plugins and standalone soft-
ware. Currently the Fabla 2.0 sampler is the
only complex project using AVTK.

Future work includes expanding the available
widgets as necessary for multi-media centric
software, and testing on all major platforms.
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Abstract
This paper introduces Ingen, a polyphonic modular host
for LV2 plugins that is itself an LV2 plugin. Ingen
is a client/server system with strict separation between
client(s) and the audio engine. This allows for many dif-
ferent configurations, such as a monolithic JACK appli-
cation, a plugin in another host, or a remote-controlled
network service. Unlike systems which compile or ex-
port plugins, Ingen itself runs in other hosts with all edit-
ing facilities available. This allows users to place a dy-
namic patching environment anywhere a host supports
LV2 plugins. Graphs are natively saved in LV2 format,
so users can develop and share plugins with others, with-
out any programming skills.

Keywords
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1 Introduction
The Free Software world has long had pow-
erful visual programming environments like
Pure Data [Puckette, 1996Puckette, 1996], and higher level
modular synthesizers like Alsa Modular
Synth [Nagorni, 2003Nagorni, 2003]. However, most exist-
ing software modular environments (or simply
modulars) do not integrate as well as possible
with other projects. Due to the limitations of
popular plugin APIs, most existing modulars are
primarily designed around built-in internals, and
use a different interface themselves (e.g. running
only as an application). This situation results in
much effort spent building components that are not
widely useful across applications.

There are several typical forms for audio proces-
sors: a stand-alone software application, a software
plugin, or a remote device. Each has advantages de-
pending on the situation. Remote control is neces-
sary for hardware to integrate with a software envi-
ronment, and increasingly popular for software due
to the pervasiveness of tablets, powerful controllers,
and networks. An ideal system must be controllable
from any location to fit well in all these scenarios.
Consequently, the same must be true of the plugins
hosted within it.

This leads to the elegant conclusion that the ideal
form of a modular plugin host, and the ideal form of
a plugin within it, are one and the same. Ingen is an
exercise in chasing this ideal: a modular host that
has exactly the same external form as the plugins
used within it. The practical benefit of such a design
is that the user can build a device anywhere in the
system where plugins are supported. This makes it
possible to work around limitations in programs or
the lack of an available plugin to solve the necessary
problem. By making it simple for users to share
their creations, the community at large can benefit
from the pool of plugins created by users who would
not have done so if writing code was required.

Ingen takes advantage of the LV2 plugin API’s
extensibility to achieve these goals. The two have
a symbiotic relationship: when Ingen itself requires
an API advancement, the improvement ideally be-
comes standardised in LV2. Other plugins may then
use this API, resulting in more powerful plugins for
use in Ingen, or other hosts. Likewise, Ingen bene-
fits from advancements originally designed for other
plugins.

This paper introduces Ingen as a useful tool for
users, and shares the general conclusions reached
over the years that led to its design, and conse-
quently the design of many aspects of LV2.

2 Features and Philosophy
2.1 Internals Considered Harmful
Ingen is designed around the principal that generic
plugins should be used wherever possible: internals
are a symptom of an inadequate plugin API. With
an open and extensible specification like LV2, these
limitations can be addressed so progress needn’t be
stalled. This avoids a walled garden effect where a
large amount of effort is spent on internals that only
work in one program.

The minimalist ideal is for Ingen to have no
internals whatsoever, but currently a few are re-
quired for tasks that are beyond the capabilities of
generic plugins. In particular, LV2 currently lacks
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polyphonic voice control, so the Note internal per-
forms voice allocation, sending controls to partic-
ular voices based on MIDI input. Perhaps in the
future there will be sufficient developer interest in
(visibly) polyphonic plugins to develop an LV2 ex-
tension which will eliminate the need for a special
voice allocation internal.

2.2 Messages Considered Wonderful
The common combination of GUI-centric design
and direct memory access between plugins and their
GUIs results in several problems. In particular, a
large subset of many plugins’ functionality is inac-
cessible except via the custom GUI. This severely
limits the power of the system to intelligently au-
tomate or otherwise control plugins. In addition,
shared access to mutable data from multiple threads
is an infamously error-prone situation, made even
more difficult with the addition of real-time require-
ments. It is all too common for a poorly written
GUI to cause audio drop-outs, or crash the plugin
entirely. Direct access to plugin internals is occa-
sionally necessary (for visualisation in particular),
but is an inherently flawed approach to plugin con-
trol in general.

The solution to this problem is a classic one: sep-
arate the plugin and its user interface, and have the
two communicate via messages. If these messages
are meaningful (i.e. not opaque), the plugin can be
controlled in the same way from any source: the
GUI, the host, other plugins, scripts, and so on. Tra-
ditionally, MIDI is used for this purpose, but MIDI
has significant limitations. Ingen supports sending
arbitrary messages between hosted plugins and their
UIs (including MIDI), and is controlled entirely via
messages itself.

Control via standard and portable messages is the
key to building audio components that can be de-
ployed in many different scenarios. Designing the
system fundamentally around this principle (rather
than “bolting on” partial support for remote control)
ensures that all interfaces to the system enjoy the
same power.

2.3 Polyphony
Though inspired by modular synthesizers, Ingen
does not seek to emulate the limitations of hard-
ware. Polyphony in particular is an important fea-
ture where software has a distinct advantage. This
is an area where extreme minimalism is counter-
productive: though it is possible to build a poly-
phonic synth manually in a monophonic modular
by replicating voices, this is a burden on the user.
Instead, Ingen implements polyphony internally.
Nodes can simply be flagged as polyphonic, and

they will be replicated as necessary. Polyphony11 is
a property of the containing graph, i.e. if a graph
has polyphony p, all nodes in that graph have either
1 or p voices. Any connection between polyphonic
ports is a polyphonic connection, and any connec-
tion from a polyphonic port to a monophonic port
mixes down all voices.

2.4 Data Types
Ingen supports many data types, including audio,
“control voltage” (CV, audio-rate numeric controls),
and events in any format such as MIDI. A port
transmits either signals or sequences: audio and CV
are the only signal types, everything else is a se-
quence. Sequences are a series of “events” or “mes-
sages” transmitted in-band with audio. LADSPA-
style control ports are control-rate signals from the
point of view of the plugin, but in Ingen are exposed
as sequences of floating point numbers to allow con-
trol changes to be transmitted with sample accuracy.

The ability to work with many data types is pow-
erful, but requires the user to understand the types of
different ports. Ingen distinguishes port data types
by colour, and also adds hint symbols as shown in
Table 11. Signal and sequence ports are distinguished
by shape: signal ports have rounded borders (sug-
gesting continuous), and sequence ports have bev-
elled borders (suggesting discrete). A symbol is
also composed on the type hint, for example, a real
number signal (CV) is tagged ‘R̃’, and real number
messages are tagged ‘R̈’.

Symbol(s) Data type
∼ Audio (floating point)
R Real (floating point)
Z Integer
M MIDI
�,X� Boolean
= Patch message

Table 1: Type hint symbols for ports.

Despite the many different data types, Ingen at-
tempts to preserve the “anything to anywhere” abil-
ity of classic modular synthesizers wherever possi-
ble. For example, a float message output can be con-
nected to a CV input; Ingen will automatically write
the CV buffer as if the signal were continuous.

2.5 Inter-Plugin Communication
Many plugins must communicate both audio and
messages, a typical example being MIDI synthe-
sizers. Both are transmitted in Ingen in the same
context to allow sample-accurate real-time message

1As opposed to the boolean polyphonic.
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handling, and avoid threading issues. This is dis-
tinct from some systems, such as Pd, where mes-
sage transmission follows different rules than signal
transmission. In other words, messages in Ingen are
in-band with audio signals.

The benefit of this approach is a single consis-
tent concept of real-time: plugins have one run()
method which processes all inputs and emits all
outputs synchronously. However, some plugins
must perform non-real-time operations in response
to messages. For example, a sampler plugin may
need to load samples from disk.

The LV2 worker extension solves this problem.
The worker extension provides a simple API for
plugins to schedule a callback to be called “soon”
in a non-real-time thread, and a mechanism for re-
plying back to the audio thread in a later cycle. This
makes it possible for plugins to perform non real-
time operations, but the API is designed such that
its use is inherently real-time safe, and plugins do
not need to use any non-portable threading libraries.
Having this mechanism implemented by the host
has performance benefits as well, for example, the
host can share one ring buffer and worker thread for
all plugins. This can dramatically reduce the mem-
ory consumption when many plugins are loaded.

3 Architecture
3.1 Model
Ingen uses a simple data model to describe all com-
ponents of a graph. Each object has a unique path
(like /fx/verb1) and a set of key:value properties.
Keys are URIs (making state meaningful), and val-
ues may have any type. Essentially, everything is a
hierarchical tree of dictionaries.

The use of a consistent data model allows for
a very simple protocol to perform a large number
of operations. Rather than adding “commands” to
the interface for every new feature, changes are im-
plemented in terms of property changes. Only a
few methods are required to allow arbitrary property
changes, so this allows for a powerful yet stable pro-
tocol. There are no issues with breaking the number
or order of arguments, since properties have no or-
der. New information can be added freely without
requiring any changes to old code.

3.2 Protocol
The Ingen protocol itself is very similar. Messages
are built from LV2 Atoms [Robillard, 2014Robillard, 2014], par-
ticularly “Object”22 which is a dictionary with URI
keys and any type of value.

2This is an “object” in the JSON sense, not as in object-
oriented programming.

The LV2 Patch extension defines several mes-
sages, similar to HTTP and DAV methods, which
can be used to access and manipulate the graph. The
simplest is a Get, which requests a description of
the given subject:

[
a patch:Get ;
patch:subject </osc> ;

]

The response describes the subject in the same
format, in this case the plugin instance, or block:

</osc>
a ingen:Block ;
lv2:prototype <urn:someplugin> ;
ingen:canvasX 42.0 ;
ingen:canvasY 24.0 .

Manipulation is similar. For example, a Put mes-
sage can be used to create the above block:

[
a patch:Put ;
patch:subject </osc> ;
patch:body [
a ingen:Block ;
lv2:prototype <urn:someplugin> ;
ingen:canvasX 42.0 ;
ingen:canvasY 24.0 ;

]
]

Syntactically, this says “I am a Put message, with
subject /osc, and body [ a ingen:Block ...]”.
The definition of patch:Put and the associated
properties gives us the meaning: “put this block at
/osc”.

The short names here are abbreviations of
URIs, for example, patch:Put expands to
http://lv2plug.in/ns/ext/patch#Puthttp://lv2plug.in/ns/ext/patch#Put. URIs
are used here to provide a global namespace, but
when properly documented, also provide trans-
parency. For example, the above URI leads to
documentation which describes the meaning of a
patch:Put. This documentation is also machine
readable to support intelligent tools. For example, a
patch:Put must have one patch:subject prop-
erty, and the same tools used for LV2 plugin vali-
dation can ensure this restriction is obeyed. Note,
however, that no Internet access is involved in han-
dling messages; properly documenting URIs is sim-
ply a best practice for convenience and tool support.

There are similar messages to delete elements, set
properties (including control values), and so on. All
messages are defined in the LV2 Patch extension,
which is also used by some plugins for control (for
example, the LV2 example sampler uses this vocab-
ulary to load samples).
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3.2.1 Serialisation
Conceptually, Ingen uses the same protocol every-
where. However, the above text serialization would
only be used over a network, or shown for debug-
ging purposes. When running in the same pro-
cess, messages are instead serialised as binary LV2
atoms for increased performance. These two en-
codings are conceptually identical and differ only
in representation. Similarly, plugins inside Ingen
which communicate with atoms are connected di-
rectly, with no serialisation.

The same textual serialisation used in the remote
protocol is used when saving graphs. Conceptually,
the Ingen protocol can be considered a stream of
patches to the saved graph (hence the name of the
LV2 Patch extension). For example, the descrip-
tion of the /osc block returned by the server in Sec-
tion 3.23.2 could be a literal snippet of a saved graph
file. Ports use the standard LV2 vocabulary, so In-
gen graphs can be loaded by applications with LV2
support, with no special Ingen support required.

3.3 Event Handling
Building and manipulating a graph of plugins re-
quires operations that are not real-time safe. To al-
low live editing without dropouts, Ingen must avoid
all such operations (such as memory allocation or
mutex locking) in the audio thread.

Conveniently, message-based control lends itself
to an event-oriented implementation, which makes
for an elegant solution to this problem. All opera-
tions in Ingen are implemented as events which are
triggered by the receipt of some message. An event
has three phases:

1. Pre-Process: Upon receipt of the message, per-
form any non-real-time operations necessary
before the change can be applied (e.g. instan-
tiate a plugin). When finished, push the event
into a queue for the audio thread.

2. Process: In the audio thread, apply the changes
prepared in the pre-process stage (e.g. insert an
instantiated plugin into a graph). After this, the
change is effectively complete. When finished,
push the event (including references to any re-
sources that need to be freed) into a queue for
post-processing.

3. Post-Process: Clean up any necessary re-
sources, and broadcast the change to all clients.

4 Examples
The most straightforward use of a modular is to
build chains of effects plugins. Though simple,

even this provides an improvement over what is eas-
ily achievable in hosts with a strictly linear signal
path. For example, processing the left and right
channels separately in a DAW like Ardour can be
achieved this way without complicating the ses-
sion’s bus routing.

More interesting is to custom-build instruments.
Figure 11 shows an example of an extremely sim-
ple polyphonic synthesizer, with only one envelope,
saw oscillator, and low pass filter.

Ingen allows graphs to be nested, and has no re-
strictions on the type or number of ports present.
For example, Figre 22 demonstrates adding sidechain
compression to a synthesizer graph.

It can be useful to combine existing high-level
plugins with more low level components. For exam-
ple, Figure 33 shows a graph which contains multiple
instruments. A MIDI filter [Gareus, 2014Gareus, 2014] plugin is
used to send automatic chords to an electric piano,
while the input note is sent to a synthesizer.

5 Future Directions
Ingen is currently useful as an environment for host-
ing plugins with flexible routing. Its architecture
allows it to function in a diverse range of environ-
ments, which has been the focus of development to
date.

One goal for future development is to become a
more powerful programming environment. Since
plugins are free to communicate with arbitrary mes-
sages, the necessary infrastructure is already avail-
able, but an appropriate set of plugins is missing.
Existing systems like Max/MSP and Pd are very
mature in this respect, but use a different model than
Ingen and LV2. In particular, it will be interesting
to investigate how to exploit meaningful messages
to provide a powerful modular programming envi-
ronment.
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Abstract

This work aims to describe the 
new hardware Segment Synthesizer, its
development process, cover a 
description of the original Segment 
Synthesis and its properties, 
advantages and limitations. It will also 
clarify the way the hardware controls 
and the user interface were designed, 
Segment's connectivity and its audio 
features.

Segment's accompanying 
features, such as the Segment Cloud 
and the Segment Manager will also be 
covered.

Keywords
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1 Introduction

Segment Synthesizer is an open source
and  open  hardware  monophonic  digital
hardware  synthesizer.  It  features  an
original  synthesis  method  invented  and
designed  by  Andre  Sklenar  called
Segment Synthesis.  It  has no keyboard,
so the user has to connect their own or
drive  Segment with a different input.  A
beats per minute - synced, low frequency
oscillator  modulated  low  pass  filter  is
present on Segment, directly controllable
by  primary  silicone  pads  on  the  front
panel.  Segment  contains  several  other
features,  such  as  drift for  intentional
parameter  instability or   a  flexible
parameter routing.

From  the  hardware  perspective,
Segment runs  bare-metal  on  an  ARM
Cortex-M4 chip, features a wide-ranging
connectivity  and supports  multiple  data
protocols.

The  first  accompanying  software
is  the  Segment  Cloud,  where  Segment
users will be able to share their presets
along  with  a  short  sound  context
example.

The  second  accompanying
software application is the software that
allows  for  Segment -  computer
communication  for  up/downloading
presets  and  firmware  and  creating
backups.  It  will  also allow the users  to
browse  the  cloud  and  up/download
content directly from/to Segment.
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2 Segment Synthesis

Segment  Synthesis is  an  original
synthesis  method  aiming to  create  very
thick and harmonically rich timbres in a
most simple and elegant way.

2.1 The basic principle

The  main  idea  behind  Segment
Synthesis is that only half of a period of a
primitive  waveform1 is  needed  to  get
enough  timbral  information  about  the
waveform.  When applying this  approach
to  the  waveform construction,  after  the
first  half  period  of  a  waveform  is
rendered, another first half of a different
primitive waveform is rendered, but one
octave  higher.  When  that  is  finished
rendering, we continue with another half
period  of  any  primitive  waveform,  one
octave higher again and so forth. 

We  call  each  of  these  waveform
bits 'segments' – hence the name of the
synthesis.

This  basic  idea  is  the  main drive
behind segment synthesis. Obviously, the
approach  described  above  is  not
practical,  so  fixed  limitations  and  a
specific  implementation  had  to  be
adopted.

The  closest  relative  of  Segment
Synthesis is Xenakis' Gendy Synthesis2.

2.2 Frequency modulation

To further  increase  the  harmonic
spectrum  employed  in  today's  music
production,  a  harsh  approach  was
undertaken.  Each  segment  is  frequency
modulated  by  itself  using  this  equation

(in this case the primitive waveform is a
sine wave):

y = sin(x * sin(nx))

Where  x  is  the  phase  accumulator
running  from  0  to  2π and  n is  the
frequency modulation coefficient.

Should the phase accumulator be
allowed to run indefinitely, this approach
would  produce  a  vastly  non-periodic
waveform:

Because  of  this  and  other  practical
reasons, the phase accumulator is reset
to 0 when  x>2π.  This way the output is
always periodic. 

2.3 Segment implementation

Segment implements  this
synthesis  method  by  providing  the
musician  with  6  segments,  where  the
waveform of each segment can be set by
blending  between  one  of  the  four
primitive  waveforms  (as  described
earlier),  the  amount  of  frequency
modulation,  panning  and  volume.  The
first  segment is a whole period. Second
and  third  segment  occur  in  the  same
time frame, but can be set independently
and  cover  half  a  period  and  tune  on
double the fundamental frequency.

The  fourth  and  fifth  segments
cover the time frame from ½ the period
to  ¾  the  period  and  play  3  octaves
higher.  Again,  the  user  can  set  their
waveform,  amount  of  frequency
modulation,  stereo  panning  and volume
independently.

Illustration 1: Simple example illustration
of  Segment  Synthesis  (no  frequency
modulation).
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The  sixth  and  final  segment
renders  from  ¾ of  the  period  until  the
end and plays four octaves up.

This particular  Segment Synthesis
implementation is neither the best or the
only  one  working.  It  is  simply  the
implementation  we  have  tuned  to  our
liking  and  is  one  of  many  possible
combinations.

2.4 Practical results

Musicians  always  seek  new ways
to craft  their sounds. As a direct result,
various post-processing is involved in our
search for  harmonically rich synthesizer
patches.  It  is  not  uncommon  to  distort
and saturate  almost  every  channel,  add
choruses,  double  the  tracks  and detune
their  synthesizer  voices  to  reach  that
goal. 

Segment Synthesis  tries  to tackle
this  issue  right  at  its  root  –  the  actual
synthesis.

Direct  comparisons  with  usual
additive/subtractive  synthesizers  show
that even when not employing frequency
modulation,  using  the  same  amount  of
oscillators,  Segment produces  a  much
richer harmonic spectrum3.

Due  to  a  very  high  number  of
harmonics,  the  fundamental  frequency
can  be  tuned  down  way  below  20Hz,
while still  retaining a significant amount
of  sonic  information,  which  were
previously  multiple-aliases.  This  further
widens the range of possible timbres.

2.5 Pitfalls

Due to  Segment  Synthesis'  sharp
edges  (similar  to  hard-sync),  Segment
gets into aliasing very easily. The number
of harmonics is so high, 2x oversampling
did not produce satisfactory  results  and
this  was  already  over  the  edge  of  the
computational power available. As this is
clearly  a  problem,  more  research  is
needed on this topic.

Another,  this  time  aesthetic,
problem is that sometimes it is difficult to
fit  Segment  into existing music  because
of the high amount of  harmonics. Again,
more  research  is  needed  to  gain
knowledge  about  how  to  control  the
amount and content of higher harmonics.

3 Auxiliary audio features

Because  no  synthesizer  would
suffice with just raw synthesis, Segment
has  several  functions  to  make  it  a  full-
featured synthesizer device.

3.1 Beats  per  minute  synced  low
frequency  oscillator  modulated
low pass filter

Segment builds on a simple notion
that  most  of  today's  popular  music  is
grid-based.  Based  on  that,  we  have
implemented a low pass filter controlled
by  a  low  frequency  oscillator  which  is
permanently synchronized with the main
tempo.  This  tempo  can  be  tapped,  set
manually  or  received  via  any  of  the
communication  protocols  we  support
(more on that later).

3.1.1 User interface
To control the LFO, which is one of

Segment's  main  features,  Segment  has
12 primary silicone pads. These are in a
4x3  arrangement,  where  the  top  4
change the LFO waveform from one of 4
primitive  waveforms  (as  described
earlier).

Two bottom rows allow the user to
trigger different BPM-synced LFO speeds
based  on  main  tempo  divisions.  These
are none, a whole note, a quarter note,
an eight note, a triplet, a sextolet and so
on.

Because  the  main  tempo  is
running  constantly,  the  musician  never
gets  off  beat  with  his  LFOs.  One  can
visualize this as having 8 running LFOs
in parallel and the user is only choosing
through which the signal is routed. The
user still may manually stop the playhead
if  there  is  a  need  –  such  as  before  a
tempo  change  during live  performance,
the musician can pre-tap the tempo and
start on the first beat.

3.2 Sidecut filter

The  sidecut  filter  is  a  single
parameter  with  no  filtering  at  the  top
position (0.5 on scale from 0 to 1). The
filter  progressively  acts  as  a  low  pass
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filter for n<0.5 and as a high pass filter
for  n>0.5.  The  filter  is  4  pole  with  a
resonance  parameter.  This  filter  also
modifies  the  main  low  frequency
oscillator-controlled  low  pass  filter  by
modifying its upper (or lower) limits.

3.3 Sounds and presets

You can store 12 presets  in total.
This  limitation  is  not  due  to  memory
limits, but because of playability and easy
preset  recalling  during  a  live
performance. When pressing the 'preset'
button,  the  12  primary  pads'  function
changes  to  preset  selectors.  Because
there is an RGB LED under each pad, the
presets  can be identified by user-chosen
color coding (set by a single encoder as
HSV).  Each  of  these  presets  include  5
sounds. The sound buttons are to the left
of 12 primary pads and these select one
of  5  available  synthesis  setups.  All
parameters  are  stored  preset-wise,
except for the sounds. To sum up – there
are 12 presets, each having 5 sounds.

3.4 Playability

Segment's  layout is  designed in a
way  so  it  can  be  played  with  a  single
hand,  leaving  the  other  hand  to  other
controllers  or  keyboards.  With  this
approach, the musician can easily change
low  frequency  oscillator  speed,  low
frequency oscillator waveform and sound
simultaneously for each note played.

3.5 Drift

To make the sounds more organic
and alive, we implemented a feature we
call  drift.  Modifying  one  parameter
(which  internally  modifies  several  of
them),  the  user  varies  the  amount  of
'instability'  of  the  synthesis  parameters.
This is done using a recursive filter:

x = x + (Tx – x)/n

Where x is current parameter value, Tx is
target parameter value and n is the drift
speed  coefficient. The  target  parameter
value is  randomly  rolled  at  a  given
interval.  All  these  and  the  maximum
distance  of  the  target  parameter  value

from  the  user-set  parameter  value  are
modified by the drift parameter. This way
the  current  parameter  value  randomly
drifts  around  its  user-set  pivot  point,
creating slight or drastic timbre changes
in time.

4 Hardware

The Segment core runs bare-metal
on  an  ARM  Cortex-M4  clocked  at
168MHz.  There  are  two  more  ARM
Cortex-M0 chips, one for controlling the
displays  and  encoders  and  one
controlling  the  buttons  and  pads.  The
chips communicate via an SPI bus.  The
code  utilises  the  libopencm3  peripheral
library. The audio engine runs on 48kHz
at 32-bit and the DAC operates on 48kHz
at 24-bit.

4.1 No keyboard

Segment has  no  included
keyboard  to  play  it.  There  are  several
reasons  for  this  decision  –  first,  most
electronic  musicians  already  own
(sometimes  a  lot  of)  keyboards  and
controllers.  It  seemed  redundant  to
provide them with more as there is only a
limited amount of devices you can put on
your  table.  If  the  user  doesn't  have  a
keyboard, he or she can either get one or
drive  Segment from  a  computer,  a
sequencer  etc.  Second,  we  all  like
different  keys  –  touch  response,  size,
number of octaves and so forth and we
don't  believe  in  a  'one  size  fits  all'
philosophy  regarding  keyboards.  Lastly,
the absence of the keyboards allowed us
to cut down the costs greatly.

4.2 Auxiliary board

The top auxiliary board consists of
8 rotary encoders and 8 monochromatic
OLED displays below each of them. The
displays  show  the  current  function  of
each encoder  depending on the  control
layer the user is in and the current value
of that parameter on a bar graph.

4.3 Control buttons

To the left of the 12 primary pads,
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there  are 3x4 buttons  that  either select
the layer the user is in or have a single
use (such as tap tempo). The three main
layers are the segment synthesis layers,
which select which segment's parameters
are being modified by the encoders.

4.3.1 Linker
The  linker  button  (a  small  chain

symbol)  triggers  the  linker  layer,  which
allows  the  user  to  link  parameters
together or route them from and to any
port

4.3.2 Scale
The  scale  button  (with  a  resize

symbol)  modifies  the  amount  of
modulation  applied  to  parameters  via
external sources.

4.4 The user button

The user button's function (marked
with an exclamation mark) can be defined
by  the  user.  This  button  can  have  any
function from any layer or one that is not
currently assigned anywhere, such as the
killswitch.

4.5 User layer

When no layer  is  selected  on the
control  buttons,  the  user  layer is
selected.  The  user  can  pull  any  8
parameters  from any layers  to the  user
layer so they are immediately accessible.
The  user  layer  is  stored  preset-wise,
because with some presets one wants to
have  hands-on  control  over  different
parameters than with others. This comes
in  handy  and  tries  to  get  closer  to  the
'one knob per function'  approach of the
analog synthesizers.

5 Connectivity

Regarding  audio,  Segment
provides  a  stereo  balanced  XLR  output
and a stereo 6.3mm headphone jack.

Furthermore,  Segment has 2 USB
MIDI  inputs,  so  the  user  can  connect
their  USB  MIDI  controllers  and
keyboards  as  Segment acts  as  a  USB
host.

Segment also  acts  as  a  class-
compliant USB MIDI device (in and out)
and support OSC.

Due to some degree of backward-
compatibility,  the  device  provides  the
user with a MIDI input in the form of a
3.5mm jack.

It is important to note that every
parameter on the device is exposed via a
MIDI CC.

Because we like analog and some
of us have some modular gear we like to
work  with,  Segment has  4  control
voltage  inputs  and  2  control  voltage
outputs.  These  can  be  mapped  to  any
parameter and also linked-through (CV in
– USB MIDI out) so Segment can act as a
CV-USB-MIDI converter.

Segment also contains UART input
and output  exposed on a 3.5mm stereo
jack.  The  user  can  connect  their  DIY
gadgets  and  control  Segment with
anything they can come up with.

6 The computer software

A specialised software (written in
Java  for  cross-platformity)  can  be
downloaded. The users can manage their
presets,  name  them,  tag  them,  backup
and  create  them.  The  software  also
provides  means  for  flashing updated  or
different  versions  of  the  firmware  and
uses  a  custom  protocol  due  to  the
computational  limits  of  the  onboard
MCU.  From  within  the  application,  the
user  is  also able to reach the Segment
Cloud.

6.1 The Segment Cloud

The  Segment  Cloud is  a  cloud-
based  service  providing  for  a  platform
where the users can share, comment, tag
and download the presets/sounds either
to  their  local  database  or  to  Segment
directly.

Since  Segment has no USB Audio
interface, short sound snippets of around
8 seconds will be rendered to audio files
on the server based on user's MIDI input.
The synthesis code is mostly portable, so
the server will emulate exactly the same
audio output Segment would produce.
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7 Tools used during development

The programming was mostly done
with  Geany and Eclipse,  compiling with
GCC.

Java  programming was  done with
NetBeans, PCB design was made possible
by gEDA and we used FreeCAD for CAD
parts designs.

8 Licencing

Since  the  team  believes  in  open
source  and  open  hardware,  the  whole
code, PCB designs and CAD drawings will
be  available  under  GPLv3  licence.  We
have chosen the GPLv3 licence because
of its 'virality' which allows us to protect
ourselves from big corporations, but not
restricting the users to study, modify, use
and contribute to the code.

None  of  Segment's  parts  are
patented  and we do not  consider  doing
that anytime in the future.
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Abstract

In this survey we explore implementations of re-
cently proposed distortion synthesis techniques,
namely the Feedback Amplitude Modulation (1st
and 2nd order cases) and Allpass filter coefficient
modulation. These techniques are based on Periodic
Linear Time-Varying systems, in which we operate
by finding a suitable modulation function to obtain
a desired spectrum. In order to illustrate this survey
and encourage exploration of these new techniques
we present examples in the Csound language.

Keywords

allpass filter coefficient modulation, feedback ampli-
tude modulation, periodic linear time-varying sys-
tems, distortion synthesis

1 Introduction

Knowledge of a good set of synthesis techniques
is a must for electronic / electroacoustic / com-
puter musicians, sound designers and synthe-
siser builders. Audio effects plugins developers
also benefit from dealing with synthesis tech-
niques that can also be used in an audio effect
context, such as the ones that will be presented.

In a previous survey, classic and recent dis-
tortion synthesis techniques along with their
implementations were presented at the LAC
[Lazzarini, 2009]. Waveshaping [LeBrun, 1979],
phaseshaping [Ishibashi, 1987], and summation
formulae [Moorer, 1976], some of the classic ap-
proaches to distortion synthesis, were analysed
mathematically and demonstrated in Csound
code. More recent or unusual approaches like
asymmetrical FM [Palamin et al., 1988], Phase
Aligned Formants [Puckette, 1995], and Modi-
fied FM synthesis [Lazzarini and Timoney, 2010]
were also exposed. Other, more common dis-
tortion techniques, are also widely presented in
computer music textbooks [Dodge and Jerse,
1997] [Moore, 1990] [Puckette, 2007].

In this paper, we address some recent tech-
niques which extend the distortion synthesis
family, namely techniques based on Periodic

Linear Time-Varying (PLTV) systems. With
these new approaches we operate by modulat-
ing the coefficients of a filter, and it was shown
[Pekonen, 2008] that it results in a kind of
dynamic version of phase distortion [Ishibashi,
1987]. A thorough study of time-varying sys-
tems applied to these techniques [Cherniakov,
2003] [Timoney et al., 2014] discloses the ap-
propriate tools for properly understanding and
using these new synthesis processes. These sys-
tems are intended to operate differently than
audio effects such as time-varying delay lines
used in flanging [Zolzer, 2011] and allpass filters
used to obtain variable fractional delays [Peko-
nen et al., 2010]. Additionally, they do not re-
place another type of variation within musical
systems where users manually change (e.g. with
a knob) parameter values to achieve a sonic ef-
fect, such as mentioned in [Wishnick, 2014].

Our motivation for presenting this survey
comes from the fact that most audio program-
mers’ work is supported by classic Linear Time-
Invariant (LTI) systems theory [Oppenheim and
Schafer, 1975], but Linear Time Varying (LTV)
systems theory is less well covered in the liter-
ature [Huang and Aggarwal, 1982]. Also, time-
varying tools were indeed considered a long time
ago [Layzer, 1971] [Risset, 1969] for audio appli-
cations within our context, but only recently are
being tackled in a more comprehensive fashion.
A good understanding of LTV theory can bring
us new kinds of synthesis/effects techniques and
different ways for implementing established ones
(which can bring nice variations or reduce com-
putational costs).

We will dedicate each of the next sections to
one technique and then conclude the text. The
aim of this paper is not to delve into the the-
ory of LTV systems; our intention, instead, is
to present another look at some techniques and
also provide code1 for their implementation.

1http://www.ime.usp.br/~ag/dl/lac15-code.zip
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2 Allpass coefficient modulation

An allpass filter contains poles and zeros at re-
ciprocal distances from the origin, so their ef-
fects on all frequencies are balanced [Moore,
1990]. A typical 1st order invariant allpass
would have a fixed coefficient, but a time-
varying one has the transfer function

H(z, t) =
−m(t) + z−1

1−m(t)z−1
, (1)

with m(t) as the modulating function which
drives the coefficient. Using this filter, a time-
varying phase distortion given by [Timoney et
al., 2009] [Laakso et al., 1996]

φ(ω, t) = −ω+2 tan−1
( −m(t) sin (ω)

1−m(t) cos (ω)

)
(2)

is introduced in the signal. If we know how
we want the phase to be distorted – in other
words, if we know φ(ω, t) – we can use the ap-
proximation tan (x) ≈ x [Timoney et al., 2009]
and determine the modulating signal as

m(t) =
−(φ(ω, t) + ω)

2 sin (ω)− (φ(ω, t) + ω) cos (ω)
. (3)

The allpass filtering described can be imple-
mented with the difference equation [Lazzarini
et al., 2009b]

y(n) = x(n− 1)−m(n)(x(n)− y(n− 1)). (4)

The condition |m(n)| < 1, ∀n, assures stability
[Cherniakov, 2003] and a DC offset

DC(n) =
1−m(n)

1 +m(n)
(5)

is introduced in the signal [Pekonen, 2008].

2.1 Classic phase distortion emulation

In [Pekonen, 2008] [Lazzarini et al., 2009b] [Ti-
money et al., 2014], we find as an example for
this technique the emulation of the classic phase
distortion [Ishibashi, 1987]. The phase distor-
tion algorithm consists of reading a cosine table
in an unusual way. Instead of getting indexes
from a regular phase generator (which goes from
0 to 1 in a period related to the chosen funda-
mental frequency) multiplied by the table size,
we add another function to the phase genera-
tor values and then read the cosine wavetable.

In order to get an approximation of a sawtooth
from a cosine, we must read the rising part of
the cosine in a shorter time, and take more time
to read the decaying portion. The function we
must add to the phase generator, in this case,
is drawn on the upper panel of Figure 1 and is
given by [Lazzarini et al., 2009b]

g(x) =

{
(12 − d)xd , x < d

(12 − d)1−x1−d , x ≥ d, (6)

where d is how long it takes to read from the
start of the cosine table up to its maximum,
and the smaller it is the more abrupt the rising
ramp will be and the more distortion we will
obtain.

If we want to implement g(x) using a mod-
ulated allpass filter we will get better results if
φ(ω, t) goes from −ω to −π [Lazzarini et al.,
2009b], so we make

φ(ω, t) =
g(t)((1− 2d)π − ω)

(1− 2d)π
− (1− 2d)π − ω.

(7)
The resulting modulation function is shown on
the lower panel of Figure 1. On Figures 2
and 3 we can see the waveforms and spectra
of the sawtooths generated with both the origi-
nal technique and the modulated allpass based
one. Notice that the missing components of the
classic phase distortion technique are actually
present in the spectrum of the modulated all-
pass output. We can also see and hear that
the latter spectrum is richer. The code for im-
plementing this example is given in Listing 1,
where we can see two instruments; the first one
works as a synthesis instrument, distorting the
sinusoid and producing richer spectra; the sec-
ond one applies the same technique as an au-
dio effect, distorting the sound of a pre-recorded
flute (any sound file can be used, or even a mi-
crophone input).

Listing 1: Classic phase distortion emulation as
synthesis (instrument 1) and technique used as
an audio effect (instrument 2)

1 <CsoundSynthesizer>
2
3 <CsOptions>
4 −o dac
5 </CsOptions>
6
7 <CsInstruments>
8
9 0 dbfs=1

10
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Figure 1: Phase distortion function (up-
per panel) and coefficient modulation function
(lower panel). Source: [Timoney et al., 2014]

Figure 2: Waveforms generated with the classic
technique (solid line) and the modulated allpass
(dashed line). Source: [Timoney et al., 2014]

Figure 3: Spectra obtained with the classic tech-
nique (upper panel) and with modulated allpass
(lower panel). Source: [Timoney et al., 2014]

11 /∗ audio−r a t e c o e f f a l l p a s s ∗/
12 opcode Al lpass , a , aa
13 ade l i n i t 0
14 setksmps 1
15 audio , a coe f x in
16 aw = audio + acoe f ∗ ade l
17 ay = −aw∗ acoe f + ade l
18 ade l = aw
19 xout ay
20 endop
21
22
23 /∗ PD func t i on ∗/
24 /∗ i n f l e c t i o n po int ∗/
25 gip = 0 .1
26
27 /∗ f t g en producing l i n e segments ∗/
28 ipdfun f tg en 1 ,0 ,16384 ,7 ,0 ,16384∗ gip

,1 ,16384∗(1− g ip ) ,0
29
30 /∗
31 i n s t r 1 :
32 PD syn th e s i s
33 us ing s i n e wave input
34 ∗/
35
36 i n s t r 1
37 i f r = p5
38 iamp = p4
39
40 /∗ r e gu l a r phase generato r ∗/
41 aph phasor i f r
42 /∗ phase d i s t o r t i o n s i g n a l ∗/
43 apd t a b l e i aph , 1 , 1 , 0 , 1
44
45 /∗ s c a l i n g o f pd s i g n a l ( eq . 7 ) ∗/
46 iw = 2∗$M PI∗ i f r / s r /∗omega value ∗/
47 i a = (1 − 2∗ g ip ) ∗$M PI
48 apd = apd∗ i a
49 apd = apd ∗( i a − iw ) / i a − i a − iw
50
51 /∗ c o e f f i c i e n t modulation func t i on
52 obtained from phase d i s t o r t i o n
53 s i g n a l ( equat ion 3) ∗/
54 /∗ enve lope f o r modulation ∗/
55 kmod l i n s e g 0 ,1 ,1 , p3−2 ,1 ,1 ,0
56 amod = −kmod∗( apd + iw ) /(2∗ s i n ( iw )

− ( apd+iw ) ∗ cos ( iw ) )
57
58 /∗ s i n e input ∗/
59 a s in t a b l e i aph ,−1 ,1 ,0 ,1
60
61 /∗ a l l p a s s ∗/
62 a s i g A l lpa s s as in , amod
63
64 /∗ enve lope ∗/
65 aout l i n e n r a s i g ∗ iamp , 0 . 01 , 0 . 1 ,

0 .01
66
67 outs aout , aout
68 endin
69
70 /∗
71 i n s t r 2 :
72 PD adapt ive s yn th e s i s
73 us ing a monophonic i n s t r input
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74 ∗/
75
76 i n s t r 2
77 iamp = p4
78 /∗ input s i g n a l ∗/
79 a f l d i s k i n2 ” f l u t e c 3 . wav” ,1 ,0 ,1
80
81 /∗ p i t ch t rack ing ∗/
82 kfr , kamp ptrack a f l ,2048
83 k f r port kfr , 0 . 0 1
84
85 /∗ master phase s i g n a l ∗/
86 aph phasor k f r
87 /∗ phase d i s t o r t i o n s i g n a l ∗/
88 apd t a b l e i aph , 1 , 1 , 0 , 1
89
90 /∗ s c a l i n g o f pd s i g n a l ∗/
91 kw = 2∗$M PI∗ k f r / s r
92 i a = (1 − 2∗ g ip ) ∗$M PI
93
94 apd = apd∗ i a
95 apd = apd ∗( i a − kw) / i a − i a − kw
96
97 /∗ enve lope f o r modulation ∗/
98 kmod l i n s e g 0 ,1 ,1 , p3−2 ,1 ,1 ,0
99

100 amod = −kmod∗( apd + kw) /(2∗ s i n (kw)
− ( apd+kw) ∗ cos (kw) )

101
102 a s i g A l lpa s s a f l , amod
103 aout l i n e n r a s i g ∗ iamp , 0 . 01 , 0 . 1 ,

0 .01
104
105 outs aout , aout
106 endin
107
108 </CsInstruments>
109
110
111 <CsScore>
112
113 /∗ uncomment l i n e s to
114 run instruments ∗/
115 i 1 0 10 0 .5 440
116 ; i 2 0 10 0 .5
117
118
119 </CsScore>
120
121
122 </CsoundSynthesizer>

2.2 Finding a distortion function

Now we present a new example with the allpass
coefficient modulation technique to bring more
insight. In this example, instead of choosing a
desired waveform and then finding out how to
modulate the allpass coefficient, we choose an
arbitrary signal to distort the phase. Keeping
in mind that we should generate a signal within
the appropriate range, that is [-1,1], any signal
a priori can be considered for the process.

So we embarked on an experiment that in-

volved the summing of partials in order to find
a function to distort the phase of an input sinu-
soid and thus get a more musically interesting
timbre. The expression we used to create our
example is given by

y(n) = 0.4 cos (f0) + 0.4 cos
(

2f0 −
π

3

)

+ 0.35 cos
(

3f0 +
π

7

)
+ 0.3 cos

(
4f0 +

4π

3

)

(8)

In order to shift the output of Equation 8 to the
appropriate range we use the scaling

ys(n) = −π
2

(y(n) + 1)

2
. (9)

Listing 2 presents Csound code for implement-
ing this new example. The upper panel of
Figure 4 shows the distortion function for this
example, while the lower panel shows the all-
pass modulation function resulting after apply-
ing Equation 3. Figure 5 shows the waveform
and spectrum obtained. Albeit this was a naive
example, it demonstrates in an intuitive way
how a phase function could be easily generated
using additive synthesis and then used to drive
the allpass filter coefficient after applying Equa-
tions 9 and then 3, highlighting another musical
possibility for using the allpass filter.

Figure 4: Phase distortion (upper panel) and
resultant modulation (lower panel) functions.

Listing 2: Implementation of an arbitrary func-
tion as a phase distorter.

1 <CsoundSynthesizer>
2
3 <CsOptions>
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Figure 5: Waveform and spectrum obtained
with arbitrary function

4 −o dac
5 </CsOptions>
6
7 <CsInstruments>
8 0 dbfs=1
9

10 /∗ audio−r a t e c o e f f a l l p a s s ∗/
11 opcode Al lpass , a , aa
12 ade l i n i t 0
13 setksmps 1
14 audio , a coe f x in
15 aw = audio + acoe f ∗ ade l
16 ay = −aw∗ acoe f + ade l
17 ade l = aw
18 xout ay
19 endop
20
21 /∗ PD func t i on ∗/
22 ipdfun f tgen 1 , 0 , 16384 , 9 , 1 , 0 . 4 ,

−90, 2 , 0 . 4 , −150, 3 , 0 . 35 ,
180/7−90 , 4 , 0 . 3 , 4∗180/3−90

23
24 i n s t r 1
25
26 i f r = p5
27 iamp = p4
28
29 iw = 2∗$M PI∗ i f r / s r ; omega
30
31 aph phasor i f r ; r e gu l a r phase
32 /∗ phase d i s t o r t i o n s i g n a l ∗/
33 apd t a b l e i aph , 1 , 1 , 0 , 1
34
35 /∗ co e f mod s i g n a l ( eq . 3 ) ∗/
36 apd = −0.5∗$M PI∗( apd+1)/2 ; s c a l i n g
37 amod = −1∗(apd + iw ) /(2∗ s i n ( iw ) − (

apd+iw ) ∗ cos ( iw ) )
38
39 /∗ s i n e input ∗/
40 a s in t a b l e i aph ,−1 ,1 ,0 ,1
41 /∗ a l l p a s s ∗/
42 a s i g A l lpa s s as in , amod
43 /∗ enve lope ∗/
44 aout l i n e n r a s i g ∗ iamp , 0 . 0 1 , 0 . 1 , 0 . 0 1

45
46 outs aout , aout
47 endin
48
49 </CsInstruments>
50
51 <CsScore>
52 i 1 0 10 0 .25 440
53 </CsScore>
54
55 </CsoundSynthesizer>

3 Feedback amplitude modulation

The Feedback Amplitude Modulation was men-
tioned by Layzer (1971) and described and im-
plemented by Risset (1969) in his catalogue ex-
ample #510, but a rigorous mathematical anal-
ysis of the technique was lacking. Since 2009
there was a renewed research interest in ex-
ploiting its musical possibilities [Lazzarini et al.,
2009a], [Kleimola et al., 2011], [Lazzarini et al.,
2011].

First of all we will review its 1st order case.
The basic idea is to modulate the amplitude of
an oscillator using its previous output, as in

y(n) = cos (ω0n)[1 + y(n− 1)], (10)

with ω0 = 2πf0 and the initial condition y(n) =
0 for n ≤ 0.

A first analysis [Kleimola et al., 2011] is made
expanding Equation 10 as

y(n) = cos (ω0n)+

cos (ω0n) cos (ω0[n− 1])+

cos (ω0n) cos (ω0[n− 1]) cos (ω0[n− 2])+

. . . (11)

y(n) =

∞∑

k=0

k∏

m=0

cos (ω0[n−m]), (12)

showing that the resultant signal is composed by
harmonics of the fundamental f0. A more inter-
esting case is when we can control the amount
of feedback in the system, so we introduce the
feedback parameter β and Equation 10 becomes

y(n) = cos (ω0n)[1 + βy(n− 1)]. (13)

The feedback parameter can be interpreted to
be similar to modulation index of conventional
FM synthesis, and its influence on FBAM’s
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spectral evolution is shown in Figure 6, bor-
rowed from [Kleimola et al., 2011].

Figure 6: β influence on FBAM spectrum.
Source: [Kleimola et al., 2011]

The interpretation of the system as a time-
varying filter enables a better analysis. The
structure for the 1st order case is

y(n) = x(n) + a(n)y(n− 1), (14)

with

x(n) = a(n) = cos (ω0n), (15)

so we have a coefficient modulated IIR filter.
As in the previous section, the modulation will
create the dynamic phase distortion, generating
new partials, and in this case the filter is not
allpass, so it has a time-varying non-flat magni-
tude response.

Applying the equations for stability analysis
by Cherniakov (2003) a condition for stability
of this system was derived as

∣∣∣∣∣β
N∏

m=1

cos (ω0m)

∣∣∣∣∣ < 1. (16)

An expression for the maximum value of beta
was proposed by Kleimola et al. (2011) as

βmax ≈ 1.9986− 0.00003532(f0 − 27.5), (17)

and they also showed that as the value of β is in-
creased, the presence of significant components
in the output due to aliasing can be observed
before the system becomes unstable. Listing 3
presents code for the 1st order FBAM imple-
mentation.

Listing 3: 1st order FBAM

1 <CsoundSynthesizer>
2
3 <CsOptions>
4 −o dac
5 </CsOptions>
6
7 <CsInstruments>
8
9 0 dbfs= 1

10
11 opcode FBAM, a , kkki
12 ; s e t vec to r s i z e to 1 sample
13 setksmps 1
14 ay i n i t 0 ; y [ 0 ] = 0
15 ka , kf , kb , i f n xin
16 /∗ cur rent sample +
17 weighted prev ious sample ∗/
18 ay o s c i l i ka + kb∗ay , kf , i f n
19 xout ay
20 endop
21
22 i n s t r 1
23 ; amp, f req , beta
24 a1 FBAM 0 .5 , 440 , 0 . 7 , 1
25 out a1
26 endin
27
28 </CsInstruments>
29
30 <CsScore>
31 f1 0 16384 10 1
32 i 1 0 5
33 </CsScore>
34
35 </CsoundSynthesizer>

The 2nd order FBAM is obtained using two
previous outputs in the modulation, each with
its own feedback parameter. The system equa-
tion is then given by

y(n) = cos (ω0n)[1 + β1y(n− 1) + β2y(n− 2)].
(18)

It was shown [Lazzarini et al., 2011] that with
this system we can get a narrower pulse, and
thus a richer spectral output for the FBAM sys-
tem, as shown in Figure 7, borrowed from [Laz-
zarini et al., 2011]. Code for implementing the
2nd order FBAM is presented in Listing 4.

Listing 4: 2nd order FBAM

1 <CsoundSynthesizer>
2
3 <CsOptions>
4 −o dac
5 </CsOptions>
6
7 <CsInstruments>
8 ksmps = 10
9 0 dbfs = 1

10 nchnls = 2
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Figure 7: Comparison between 1st (in dots) and
2nd order (solid line) FBAM for 500 Hz funda-
mental. Source: [Lazzarini et al., 2011]

11
12 opcode Fbam2 , a , akk
13 setksmps 1
14 asigm1 i n i t 0
15 asigm2 i n i t 0
16 ain , kb1 , kb2 xin
17 a s i g = ain ∗(1 + kb1∗asigm1 + kb2∗

asigm2 )
18 asigm2 = asigm1
19 asigm1 = as i g
20 xout a s i g
21 endop
22
23 i n s t r 1
24 kb1 = 0 .7
25 kb2 = 0 .7
26 ; s i n u s o i d a l input
27 a in o s c i l i 1 , 440 , −1, 0 .25
28 a s i g Fbam2 ain , kb1 , kb2
29 a s i g balance as ig , a in
30 outs as ig , a s i g
31 endin
32
33 </CsInstruments>
34
35 <CsScore>
36 i 1 0 5
37 </CsScore>
38
39 </CsoundSynthesizer>

For a deeper analysis we can understand the
system as a 2nd order PLTV system by rewrit-
ing the system equation as

y(n) = x(n)+β1a1(n)y(n−1)+β2a2(n)y(n−2),
(19)

with x(n) = a1(n) = a2(n) = cos (ω0n). This is
the simplest example but the analysis equations
are complicated for this second order system.
However we can also uncouple the input and

modulation signals as independent streams, and
treat the whole system as the combination of
two first order units to reduce the difficulty of
the analysis.

Despite the initial results about the 2nd order
FBAM that were already reported, we plan to
proceed with more thorough investigations es-
pecially regarding its stability and to determine
any consequent restrictions it might have on the
coefficient modulation waveform.

4 Conclusions

In this survey we presented some techniques
for sound synthesis derived from the concept
of phase distortion. Results can be used to
generate approximations of classic sawtooth os-
cillators and more timbrally-involved FM-like
spectra. Implementations in Csound, which
are easily translated to other languages, were
presented in order to promote the techniques
among our community and audio tools develop-
ers.

The application of time-varying systems is
not new in general signal processing, but only
recently is the theory behind these systems be-
ing explored for time-varying digital audio filter
systems. This paper shows there is a signifi-
cant potential for a number of novel techniques
based on PLTV systems. The field is still open
to investigation, in particular with regards to
2nd and higher order systems.

We hope that this brief survey invites more
musicians and technicians to explore the nice
retro motivated sounds obtained with these sys-
tems, maintaining the interest in distortion syn-
thesis/effects techniques. We hope to encourage
the sharing of ideas and principles around these
techniques, such as, for instance, nice distortion
functions that could be used either in synthesis
or acoustic instruments processing.
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Abstract

In year 2008, a feature with the name “timer-based
scheduling” (also known as “glitch-free”) has been intro-
duced into PulseAudio in order to solve the conflicting
requirements of low latency for VoIP applications and
low amount of CPU time wasted for handling interrupts
while playing music. The novel (at that time) idea was
to use timer interrupts instead of sound card interrupts
in order to overcome the limitation that the ALSA pe-
riod size cannot be reconfigured dynamically. This idea
turned out to hit some corner cases, and workarounds
had to be added to PulseAudio. Despite its age, the im-
plementation of the idea is still not 100% correct. This
paper explains why it is the case and what can be done
to improve the situation.

Keywords
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1 Introduction

Traditionally, ALSA playback chain was based on
ALSA plugins sitting on top of the hardware device
(represented by the “hw” plugin).

Hardware devices have circular buffers in memory,
and there are two pointers that point to this buffer:
the hardware pointer and the application pointer.
The hardware periodically reads a sample pointed
to by the hardware pointer and sends it to ana-
log or digital outputs, then increments this pointer.
The application writes samples to the memory area
pointed to by the application pointer and moves it
past the just-written samples.

There are multiple mechanisms provided to the
application to write sound data to the sound card:
classical unix-style writes via snd pcm write*()
functions, mmap-based access, and the dangerous
callback-based API. Still, with any of them, the end
result is the same: application pointer tracks the
first unwritten position in the soundcard buffer.

If the hardware pointer crosses the application
pointer, an underrun happens. To avoid underruns,
an application must supply new audio samples in a
timely manner.

The hardware notifies the kernel when the hard-
ware pointer crosses some predefined positions (pe-
riod boundaries) in the circular buffer. There
are, again, multiple mechanisms (blocking writes,

poll()) how these notifications can be passed to the
application, so that it doesn’t have to busy-wait.

A whole lot of other behavior (format-conversion,
resampling, mixing) is provided on top of the raw
hardware devices by means of ALSA plugins [1]. The
general idea (a circular buffer with hardware and
application pointers and per-period wakeups), how-
ever, remains. As a result, applications can trans-
parently use a large subset of ALSA API when work-
ing with such plugins.

This playback model was popular in the dmix era,
and thus applications developed during that time
gained dependency on some of the properties of this
model. E.g., an assumption is common that wakeups
due to the audio device happen regularly (exactly
once per period) and can be used as a clock. An-
other common assumption is that the default buffer
and period sizes are suitable for the application’s
purpose. In fact, there was no way to change them
programmatically in the default “plug:dmix” setup.

There is certain latency (influenced by the audio
buffer size) between the time when an audio sample
is written to the API and when it is actually played
back through the speakers. Low latencies are gen-
erally expected when an application reacts to user
input. E.g., when a user changes equalizer settings
in the audio player, they should take effect imme-
diately. This is even more important for games: a
gunshot sound should be heard as soon as the shot is
made. Voice over IP applications are also sensitive
to latency. So, with the traditional playback model,
due to the fact that the latency is fixed, low latencies
are generally used.

On the other hand, low latencies are not opti-
mal for music players. First, low latencies make
applications sensitive to process scheduler decisions,
increasing the chance of audio dropouts. Second,
low latency means high rate of interrupts from the
sound card and application wakeups, which is bad
for power saving. So, music players and games are
under two conflicting requirements related to la-
tency.

2 Timer-based scheduling
The traditional solution was to accept frequent (as
required for the worst case) wakeups as a necessary
evil, because there is no way to reconfigure buffer
and period size on the fly. However, in some cases, a
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better (albeit more complex) solution exists to this
conflict of requirements. The solution (“timer-based
scheduling” [2], implemented in PulseAudio [3] and
CRAS [4]), involves the use of a dynamically recon-
figurable timer instead of sound card interrupts as a
source of wakeups.

PulseAudio has a client-server architecture. The
server interacts with ALSA devices and performs
mixing and routing of sound data received from
client applications. Each time the timer fires, the
sound card is asked about its current playback po-
sition, and, based on this information a decision is
made how much data to request from applications in
order to maintain their desired latency and to avoid
underruns. Note that, if there are low-latency appli-
cations playing, the buffer will never be full.

A new stream can appear at any time, or an ap-
plication can request volume change of an exist-
ing stream. The server is expected to deal with
such requests quickly, i.e. without waiting for the
already-buffered sounds to play out. Indeed, wait-
ing for these sounds could take more than a second,
which is too much. Thus, the server has to discard
already-mixed samples from the sound card buffer
and replace them with a new version, which takes
the new stream or the volume change into account.
Such operation is called a “rewind”. It is an essen-
tial ingredient in an implementation of a dynamic-
latency sound server, unless a tight limit is placed
on the amount of buffered audio data. PulseAu-
dio rewinds. CRAS doesn’t, but Chrome/Chromium
never requests latency high enough to cause a prob-
lem.

As the timer-based approach is more complex
than the traditional approach, there are more ques-
tions to be answered by the implementation (such
as PulseAudio) and parameters to be decided upon.

• Total sound card buffer size.

• The amount of time to sleep after writing sound
data.

• The amount of old data to leave in the buffer
“just in case” when rewinding.

• What latency limits to export to clients.

• How much data to ask from a client at a time.

3 Buffer and timing constraints

PulseAudio uses a large buffer (up to 2 seconds,
if the hardware allows) by default. This is good
for the purpose of providing high latencies for
music players and thus for reducing the rate of
CPU wakeups. The default can be overridden
with the tsched buffer size parameter that is ac-
cepted by module udev detect, module alsa card,
module alsa sink and module alsa source. The
unit of the tsched buffer size parameter is mi-
croseconds.

This default, however, poses a problem1 if any
part of the audio processing pipeline inside the
PulseAudio process turns out to be CPU-intensive.
Examples of CPU-intensive steps include conver-
sion to a compressed format such as DTS. When
PulseAudio is running under Valgrind, or on a weak
embedded CPU, even resampling becomes a prob-
lem.

The problem is related to the fact that PulseAudio
only has a finite budget of time it can run with real-
time priority without making blocking system calls.
rtkit contains a hard-coded limit that doesn’t allow
expanding this budget past 200 ms. This limit exists
for safety reasons, because a misbehaving real-time
application can otherwise wedge the whole system.
Thus, in the worst case (which always happens at
the start of a high-latency stream) PulseAudio has
to finish its processing of two seconds of audio in 200
ms, or it gets killed.

The situation is further aggravated by the fact
that the cpufreq subsystem considers “low” (i.e.
less than 80%) load as an excuse to keep the CPU
frequency at the lowest possible value.

A solution that a user affected by the problem can
apply is to set the buffer size to a lower value, such
as 200 ms.

4 Wakeup timings

In the traditional timing model, the application usu-
ally is woken up once per period. The period size
comes from application settings or from the defaults.
There is not much that can be done beyond that (e.g.
in response to underruns), because buffer and period
sizes are not dynamically reconfigurable.

With timer-based scheduling, better reaction to
underruns is possible, and PulseAudio implements
that. It looks at the sink’s latency (which is just the
amount of time until it underruns unless supplied
with new data), subtracts the scheduling watermark,
and sleeps for that time. The default watermark is
20 ms. It is increased if an underrun or a near-
underrun happens, and decreased if sufficient time
has passed without such bad events2.

This logic is further complicated by the fact that
the requested latency is specified in the sound card’s
clock domain, while sleeping is done using the sys-
tem clock domain. If the sample rate reported by
the card is not precise, then these two values can dif-
fer. PulseAudio contains a “smoother”3 that takes
timestamps in both clock domains, estimates the ac-
tual sample rate, and then converts the intervals as
needed.

1https://plus.google.com/+ColinGuthrie/posts/
EG7nT9TXTpd

2See http://cgit.freedesktop.org/pulseaudio/
pulseaudio/tree/src/modules/alsa/alsa-sink.c, func-
tions check left to play(), decrease watermark() and
increase watermark()

3http://cgit.freedesktop.org/pulseaudio/
pulseaudio/tree/src/pulsecore/time-smoother.c
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The traditional solution for mapping between
soundcard and system clock domains would be us-
ing a delay-locked loop with a filter containing some
integrators in it [5]. This solution works for JACK,
but cannot be employed in PulseAudio, because the
timestamp reports are assumed to be regular in time,
which is valid only if the traditional period-based
timing scheme is used. Therefore, the smoother in
PulseAudio uses a 10-second window and builds a
least-squares linear approximation between the sam-
ple count and the wall-clock timestamp based on
data within that window.

A special rule (that cuts the sleeping time in half)
is applied until one buffer worth of sound data is
played. This is needed because some sound cards
contain a hardware FIFO queue that consumes the
initial portion of data much faster than one would
expect according to the size of that portion and the
sample rate.

All of the above assumes that the sound card
can accurately report its hardware pointer at ar-
bitrary point in time. However, this assumption
is false on cards that do double-buffering of audio
data transfers. Such cards can be distinguished us-
ing the snd pcm hw params is batch() ALSA API
function. Typically, such batch cards provide posi-
tion reports that are accurate to only one period,
and timer-based scheduling makes a period as large
as possible to avoid useless CPU wakeups from the
interrupts originating from the sound card. Since
position reports are totally inaccurate, one just can-
not obtain an estimation of time-to-sleep accurate
up to 20 ms.

Currently, PulseAudio disables timer-based
scheduling on batch cards4, because it cannot save
the CPU from unneeded wakeups.

CRAS does not have this watermark-based logic
and does not use the mapping between soundcard
and system clock domains for the purpose of wakeup
timing. Indeed, CRAS doesn’t have to do so, be-
cause it respects the client’s idea how many frames
should remain in the soundcard buffer when asking
for more data, instead of asking as late as possible,
and thus stays far from any edge cases.

5 Rewinds

As already explained, rewinds are needed in order to
provide low-latency reaction to unpredictable events
such as new streams and volume changes, while
keeping the average latency high in order to save
power. Rewind handling is an especially problematic
area, with a lot of code written but never properly
tested.

5.1 Rewind-related APIs

Both ALSA and PulseAudio offer APIs that let ap-
plications rewind their audio streams.

4http://cgit.freedesktop.org/
pulseaudio/pulseaudio/commit/?id=
826c8f69d34ef49e86fe0ab6c93c1ffba8916131

As already mentioned, ALSA’s view on play-
back devices is based on the notion of a circular
buffer in memory, with the hardware pointer and
the application pointer associated with it. Here are
the rewind-related API functions offered by ALSA:
snd pcm rewindable(), snd pcm rewind().

The snd pcm rewind() function tries to move the
application pointer backwards by the specified num-
ber of samples, and returns the (possibly lower)
number of samples that the pointer has actually been
moved by. Of course, attempting to request rewind-
ing into the already-played portion of the buffer does
not make sense. The snd pcm rewindable() func-
tion returns the maximum safe amount of rewind-
able samples5.

PulseAudio does not base its playback model on
a mmap-able circular buffer. Instead, it has one
stream-oriented function that clients use to submit
samples: pa stream write().

Seeking is done at the same time as writing
new samples, using the last two arguments. Un-
like ALSA, which supports only rewinds relative to
the application pointer (“write index”, as PulseAu-
dio calls it), PulseAudio API can also be used to
rewind to an absolute position in time, or relatively
to the “read index” (the sample that is currently
being played). The raw read index and write in-
dex can be obtained in the pa timing info struc-
ture via the pa stream update timing info() and
pa stream get timing info() pair of functions.

OSS does not support rewinds in ways other than
the (deprecated) mmap interface, which only works
on top of raw hardware devices. I.e. no resampling,
no channel remixing, only exclusive access to the
sound card.

JACK, SDL, libao and the waveOut family of Win-
dows APIs do not support rewinds at all. Android’s
AudioTrack API and CRAS don’t support them, ei-
ther.

5.2 Testing rewinds

Rewind operations can be used by software only if
they actually work as described. E.g., a perfect im-
plementation of rewinds needs to ensure that, after
rewinding over some samples and writing exactly the
same samples back, the audible result is exactly the
same as if the rewind didn’t happen at all.

Currently, for ALSA, the most common applica-
tion that does a lot of rewinds is PulseAudio, and it
does that only in response to dynamic events such
as new stream appearing or volume changing, where
a user already more-or-less expects a glitch and thus
may not realize that something is wrong. So, in
order to really ensure that rewinds work, a more
systematic testing methodology is needed.

A simple ALSA-based program6 has been thus
written that exercises the snd pcm rewind() func-

5There are disagreements on the intended meaning of the
word “safe”.

6http://permalink.gmane.org/gmane.linux.alsa.
devel/122179
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tion in such a way that is impossible to confuse the
correct operation and a glitch. The program uses a
buffer with four periods. After the initial filling of
the buffer with silence, the application uses block-
ing writes, as follows. Each time it gets a chance
to write a period worth of samples, it rewinds one
period, writes one period of silence and one period
of square waves. Therefore, if rewinds are imple-
mented correctly, the hardware pointer only sees si-
lence, and nothing should be heard from this appli-
cation. Any non-silent output (without the applica-
tion complaining that the rewind did not yield the
expected result, and without near-underruns) is an
indication of a bug somewhere.

Hardware ALSA devices pass this simple test.
Many other devices currently don’t.

It would also be nice, for similar reasons, to test
the correct operation of the snd pcm rewindable()
function. However, no valid test can be devised at
this time, because there are disagreements about
the semantics of the return value. As this function
only recently stopped crashing on some plugins7,
PulseAudio does not use it, and uses an approxi-
mation based on snd pcm avail delay() instead.

5.3 Causes of incomplete rewindability in
hardware

Currently, for the “hw” plugin the .rewindable
callback is implemented, effectively, as a difference
between the application pointer and the hardware
pointer. That is, “you can rewind up to the hard-
ware pointer”. However, the hardware pointer in-
formation is only updated either on period bound-
aries, or on explicit request (via snd pcm avail())
from the application. Failure to perform such
request would lead to alsa-lib basing its calcu-
lations on an outdated value of the hardware
pointer, and, thus, to the overestimated results for
snd pcm rewindable().

There is a disagreement whether the
snd pcm rewindable() function should indeed
return the difference between the application
pointer and the hardware pointer. PulseAudio
contains a safeguard that does not allow the re-
wound application pointer to come too close to the
hardware pointer, because8

some DMA controllers go nuts (such as
breaking the stream, causing interrupt
storms, or something else seriously buggy)
when trying to write to data that the DMA
controller is just about to transfer.

The default safeguard is the largest of 256 bytes
or 1.33 ms.

On some cards, the hardware pointer position is
not known exactly. For example, ymfpci updates its
hardware pointer using a timer that fires every 5 ms.
Therefore, the hardware pointer position reported to

7Most of the fixes are in alsa-lib 1.0.28 and one is in 1.0.29
8http://permalink.gmane.org/gmane.linux.alsa.

devel/127256

userspace may lag behind the real one by up to 5 ms,
and the number of rewindable samples may be also
overestimated by the same amount.

Also, the hardware itself may report the hard-
ware pointer position imprecisely. E.g., on com-
mon Intel HD Audio controllers, the granularity of
the reported pointer position (as measured by call-
ing snd pcm avail() and snd pcm rewindable()
repeatedly) is 32 or 64 bytes. This is probably re-
lated to the DMA block size.

An idea was expressed that alsa-lib should take
the above sources of uncertainty over the hardware
pointer position or DMA engine weirdness into ac-
count when returning the number of rewindable
samples.

An opposite viewpoint is expressed by Clemens
Ladisch9:

It would make sense to report
the pointer update granularity, but
not to adjust the return value of
snd pcm avail/rewindable().

However, on many cards, the pointer update gran-
ularity is simply unknown. A set of patches has been
posted by Pierre-Louis Bossart10 (and later merged)
that are expected to help assessing the granularity
of pointer updates at runtime. Still, nobody so far
has tried to use the information exposed by these
patches in PulseAudio.

5.4 Rewindability of self-contained ALSA
plugins

User-grade programs (i.e. everything except sound
servers) usually don’t talk to hw devices. Instead,
they use ALSA PCM plugins for functionality like
mixing, channel remapping, sample rate conversion
and software-based volume control. There are also
more exotic plugins for tasks like software AC3 or
DTS encoding, or spectrum equalization. Finally,
there are plugins that allow ALSA programs to talk
to sound servers like PulseAudio or JACK.

The implementation of rewinds is the simplest in
plugins where each sample sent to the slave is de-
termined only by the corresponding input sample.
That is, the plugin never looks at non-current sam-
ple and doesn’t keep any state. In this case, the
implementation of the rewind operation should just
rewind the slave by the same amount of samples.
Also, to answer the question “how many samples can
be rewound safely”, the plugin should just ask the
slave and forward the answer. Here are the plugins
where this logic or a simple variation of it applies:
alaw, asym, copy, empty, hooks, lfloat, linear,
mmap emul, mulaw, multi, route. These plugins are
indeed rewindable. The softvol plugin is rewind-
able for the same reasons as long as nobody changes
the volume.

9http://permalink.gmane.org/gmane.linux.alsa.
devel/127290

10http://permalink.gmane.org/gmane.linux.alsa.
devel/133961
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The iec958 plugin is used by some old cards (such
as ATIIXP and CMI8338) to convert raw PCM to
IEC958 frames and back. Each IEC958 subframe
corresponds to one audio sample and one channel.
Besides the PCM sample itself, the subframe con-
tains a preamble, and one bit for each of Validity
(for DAC), User data, Channel status and Parity.
Different subframes use different types of preamble.
This is needed to distinguish between left and right
channels, as well as to mark the beginning of user
data and channel status. The whole audio block
contains 384 subframes.

Therefore, the plugin needs to keep a simple in-
ternal state: the number of subframes sent since the
last subframe with the Z-type preamble (which is
used to mark the left-channel subframe which also
contains the beginning of the first channel status
word). Before alsa-lib 1.0.28, rewinds didn’t affect
the state. Therefore, right after a rewind, a wrong
type of preamble was used, and wrong bits (not con-
tinuing what was sent before) of channel status were
sent down the link. This could cause a momentary
resynchronization glitch on some receivers. As of
alsa-lib 1.0.28, this is fixed by updating the state af-
ter each rewind, and thus the iec958 plugin fully
supports rewinds now.

The adpcm plugin converts between linear PCM
and IMA ADPCM, which is only useful for ancient
ISA cards. Again, the conversion is not stateless:
the per-channel state includes the predicted sam-
ple value and the step size index, and is updated
at each new sample according to simple table-based
rules. As of alsa-lib 1.0.29, rewinds don’t change the
state. It is a bug. To solve it, one has to make this
state per-sample per-channel, organized in a circu-
lar buffer similarly to the sound samples. This is not
done yet.

The dmix and dshare plugins currently fail the
rewind-correctness test for unknown reason. On
them, the snd pcm rewind() function returns ex-
actly the same number of samples as requested, how-
ever, the test program produces non-silent output.

As dsnoop is a capture-only plugin, it is not re-
viewed here. The share plugin could not be tested
due to unrelated bugs, but, according to the source
code, its .rewindable callback always returns 0.

5.5 External plugins

ALSA comes with two SDKs for building third-party
plugins. The ioplug framework is for building plug-
ins that output sound to some external systems, and
extplug is for building filters. Also there is a ladspa
plugin that wraps, well, third-party LADSPA plug-
ins. There are two big problems in this area.

First, the plugin is not notified about
rewinds at all. There is simply no such call-
back in the snd pcm ioplug callback and
snd pcm extplug callback structures. The
common code (wrongly) pretends that ioplug-based
plugins are fully rewindable, but the rewind oper-
ation merely moves the application pointer back

by the specified number of frames, and returns
that number. Extplug-based plugins, as well as
the ladspa plugin, simply forward rewind-related
requests to the slave.

An important special case is that rewinds do not
work (i.e. do nothing, “successfully”) in the pulse
ALSA plugin, even though native PulseAudio API
does support rewinds.

But maybe it is possible to detect rewinds even
without the corresponding callbacks?

For ioplug-based plugins, it may be possible to fig-
ure out from within the .transfer callback if there
was any rewind operation between the previous call
and the current call, by looking at the application
pointer in the snd pcm ioplug structure. This may
be sufficient to implement rewinds in the pulse plu-
gin, but, as this approach does not allow to figure
out the real amount of rewindable samples, it is a
bad idea.

Extplug-based plugins don’t have any access to
their own application pointer, because it is hidden
behind a private snd pcm extplug priv structure.
So they just don’t have any chance to handle rewinds
properly.

To solve the problem mentioned above, it would
be necessary to add new callbacks. But this would
cause the second issue, which is much worse. Imag-
ine that someone has to implement these callbacks.
Many ioplug/extplug-based plugins wrap external li-
braries. In order to implement rewinds, a plugin
would have to tell the library to restore its old state.
Mission impossible: these third-party libraries (as
well as LADSPA API), in the vast majority of cases,
don’t have API functions that save and restore the
state. I.e. this is the same problem as above, but
one layer deeper and thus beyond our control. Be-
sides, there is physically no way to e.g. undo send-
ing of Bluetooth packets. As a result, rewinds just
cannot be implemented correctly in the majority
of ioplug/extplug-based plugins, and it was, as it
seems, a mistake to offer them.

An interesting exception to the above non-
rewindability rule is the jack plugin, especially since
JACK itself is non-rewindable. The trick is that
the plugin creates a real-time thread, and the JACK
callback is invoked in the context of this thread, ex-
changing the samples with the JACK server. This
looks very much like a real sound card, which pe-
riodically reads samples from the memory buffer.
The .rewindable callback still yields a question-
able result, though, by not taking into account the
hardware pointer position uncertainty, which is one
JACK period in this case.

It may be theoretically possible to extend
this “low-latency worker thread” idea to other
ioplug/extplug/ladspa plugin types – i.e. to cre-
ate a thread just for the purpose of calling the
.transfer callback instead of calling it when the
client writes data. A natural period for calling this
callback would be one slave period, but then the
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resulting minimum latency would be three slave pe-
riods (if the slave allows using two periods), which
is one period more than without this thread.

The current understanding is that, instead of
adding an extra level of buffering in ALSA for plu-
gin rewindability, it may be a better idea to teach
PulseAudio to identify non-rewindable ALSA de-
vices as such, and deal with them as appropriate.
Indeed, this low-latency worker thread creates fre-
quent wakeups and thus nullifies the primary moti-
vation behind timer-based scheduling anyway.

5.6 Rate plugin

The rate plugin converts the sample rate of the au-
dio data. The process is based on the idea to find
a digital representation of the same analog signal
that is represented by the sequence of input sam-
ples. Due to Shannon’s sampling theorem, a perfect
resampler should reject frequencies higher than half
of the lower sample rate, and pass all lower frequen-
cies through. Therefore, its time response can be de-
scribed by the appropriately scaled sinc function [6].
The sinc function, however, has infinite support and
thus has to be windowed or approximated by some
other function with a finite support in order to be-
come useful. Such approximations introduce distor-
tions in the resampled sound: components with fre-
quencies below the ideal cut-off frequency get atten-
uated, and also “aliased” content (with frequencies
not present in the input signal) appears in the out-
put. There are several libraries that implement au-
dio resampling, using different approximations, and
thus having different quality and speed.

It follows from the description above that each
output sample is influenced by several input sam-
ples, and that each input sample affects several out-
put samples. So the process of sample rate conver-
sion is stateful.

The rate plugin delegates the process of sam-
ple rate conversion to a pluggable external con-
verter. Alsa-lib itself contains a very simple (and
low-quality) converter based on linear interpolation.
Alsa-plugins contain converters based on the Speex
resampler, the ffmpeg resampler, and libsamplerate.

This architecture suffers from the same limitations
as discussed above for extplug. Namely:

• there are no rewind-related callbacks in the
snd pcm rate ops structure;

• none of the underlying libraries supports
rewinds explicitly, or allows to save and restore
(or otherwise alter) its state programmatically.

Therefore, in the current architecture, the rate
plugin cannot be rewindable. And indeed, it isn’t
rewindable, as of alsa-lib 1.0.28.

The same objections apply to resamplers used by
PulseAudio, and there is already a bug11 reported

11https://bugs.freedesktop.org/show_bug.cgi?id=
50113

by a user who noticed imperfect stitching of resam-
pled audio before and after the volume change of an
unrelated stream.

This situation is far from ideal, especially since
sample rate conversion is a very common part of the
audio processing pipeline. An important difference
here from the ioplug/extplug/ladspa case is that
there is, in fact, no task to wrap arbitrary third-
party libraries, especially since none of the existing
resampler libraries are actually suitable. The pro-
cess of sample rate conversion is well-defined math-
ematically, the set of input samples affecting a given
output sample is known, so it is possible to write
a rewindable windowed-sinc resampler implementa-
tion from scratch. But nobody did it so far.

5.7 PulseAudio virtual sinks

Some PulseAudio virtual sinks (e.g.,
module-ladspa-sink and module-echo-cancel)
perform non-trivial audio processing and keep state.
PulseAudio sink API includes the rewind operation,
and plugins generally supply it. However, the imple-
mentation either only moves pointers, or resets the
filter completely (because the backend library is not
rewindable), which is wrong. To fix this, one needs
to remove the “reset the filter” recommendation in
the module-virtual-sink template module, and
explain how to express the fact that the virtual sink
is not rewindable.

To be fair, the recently-submitted LFE filter
patchset by David Henningsson12 takes rewinds into
account.

5.8 Dealing with non-rewindable devices

PulseAudio currently contains some logic13 that dis-
ables timer-based scheduling and rewinds on ioplug
plugins such as a52. However, the code does
not match the (extplug-based) dca plugin as non-
rewindable, and needs to be updated.

Initially, the idea was to fix the
snd pcm rewindable() ALSA API function so
that it always returns 0 for non-rewindable plugins
(which is a good idea anyway) and use it. However,
there are two reasons why this solution cannot
work.

First, snd pcm rewindable() works only when
the buffer size is already set. As already explained,
rewinds are needed only in order to compensate the
unacceptably-high latency implied by a large buffer.
If rewinds are impossible, the buffer must be small.
So, in order to see whether we need a small buffer,
we would need to set the buffer size already.

Second, without sending a test sound, it does
not actually help to distinguish a rewindable device
from a non-rewindable one. Indeed, a rewindable-
in-principle device with an empty buffer (and the

12http://lists.freedesktop.org/archives/
pulseaudio-discuss/2015-January/023042.html

13http://cgit.freedesktop.org/
pulseaudio/pulseaudio/commit/?id=
cb55b00ccd25d965b1222e74375aee05427a449b
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buffer is initially empty) cannot be rewound.
Thus, a new API is needed in order to test

whether an ALSA PCM is rewindable at all.
Such API (snd pcm hw params can rewind()) has
been added in April 2008, but removed14 10 days
later, because it was thought (wrongly) that the
snd pcm rewindable() API function is more useful.

6 Client-side timing

Some legacy applications (e.g. many ALSA-based
media players) rely on the audio subsystem as
a source of timing. In particular, they expect
the wakeups to come in a regular fashion, in
strict accordance to the period size. To sat-
isfy such legacy clients, PulseAudio has a special
PA STREAM EARLY REQUESTS flag that can be spec-
ified when creating a stream. Without this flag, re-
quests will be made as late as possible. The pulse
ALSA plugin always sets this flag.

On a system where timer-based scheduling works,
and the CPU scheduler behaves reasonably, this flag
usually works as expected. Indeed, due to the abil-
ity to program the timer for an arbitrary interval,
PulseAudio can emulate any period size to the client.

Problems begin15 when PulseAudio decides not
to use timer-based scheduling (e.g., due to a batch
card). In this case, PulseAudio uses the period size
that is supported by the sound card and is close to
the one specified in the daemon.conf file. Now sup-
pose that the stream is moved to a different sound
card that does not support this period size. As
PulseAudio only wakes up and requests data from
the client only on interrupts from the sound card,
it no longer can wake up the client precisely when
needed. In theory, clients are notified when buffer
metrics change, and can adapt, but, in practice,
no client handles this seriously. Worse, wrapper li-
braries such as alsa-lib and SDL cannot handle this
easily, as they don’t have the notion of dynamic
changes of buffer metrics in their client API.

A separate question is what to do with clients like
Wine or QEMU that (for various legitimate reasons)
request very low latencies that are impossible to sat-
isfy with the default buffer and period sizes. To add
insult to the injury, the pulse ALSA plugin accepts
almost any period size and, due to lazy creation of
the PulseAudio stream, has no way to tell the client
that the requested buffer and period sizes were ac-
tually not used.

The arguments listed above highlight the fact that
PulseAudio, in non-tsched mode, does not perform
adequate isolation of clients from the actual sound
hardware, in terms of the supported and advertised
period sizes. The bug can be fixed by asking sound
data from a client using a separate timer, not based
on soundcard interrupts, and possibly lying to the

14http://git.alsa-project.org/?p=alsa-lib.git;a=
commitdiff;h=c88672d86fe713e8f049df895fc3b64c472fbf5d

15https://bugs.freedesktop.org/show_bug.cgi?id=
66962, wrongly closed as fixed at the time of this writing

client about the total latency where regularity of re-
quests matters more than exact latency estimation.

7 Conclusion
Timer-based scheduling does solve the real problem
that it is intended to solve: it achieves dynamic la-
tency, which should be good for power saving. If
no resampling or other stateful audio processing is
used, it “just works” on simple devices that DMA
one sample at a time and report their DMA position
precisely. On devices with more complex buffering
models, it runs into corner cases described in this
paper. But none of the listed problems look un-
solvable – after all, there is always a possibility to
fall back to the traditional period-based playback
model. And there is indeed development work on-
going to provide more detailed timing information,
to implement rewinds correctly in new PulseAudio
effects, and to make other improvements – which is
a good thing.
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Abstract

This article introduces the use of the Intel Galileo
development board as a platform for sound synthe-
sis and processing, in conjunction with the Csound
sound and music computing system. The board in-
cludes an Arduino-compatible electronics interface,
and runs an embedded systems version of the Linux
operating system. The paper describes the relevant
hardware and software environment. It introduces
a port of Csound, which includes custom frontends
that take some advantage of the board capabilities.
As a case study, a MIDI synthesizer is explored as
one of the many potential applications of the system.
Further possibilities of the technology for Ubiquitous
Music are also discussed, which use the various in-
terfacing facilities present on the Galileo.

Keywords
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1 Introduction

The Intel Galileo board1 (fig.1) is an embed-
ded systems development board based on the
Quark System-on-Chip (SoC), which includes
an Arduino-like functionality (and compatibil-
ity with some existing extension shields and
software). The board can be used as a straight
replacement for the Arduino Uno boards, with
a customised Arduino Integrated Development
Environment (IDE) that allows programming of
applications (sketches) using the Wiring library.
The Galileo, however, runs under a Linux-based
operating system, and thus allows other modes
of application that are not restricted to Arduino
IDE sketches, and which can take more com-
plete advantage of the board capabilities.

In this article, we examine the use of
the Galileo board for sound synthesis and
processing, with the Csound[ffitch et al.,
2014][Boulanger, 2000] sound and music com-
puting system. We demonstrate the scalabil-

1http://arduino.cc/en/ArduinoCertified/
IntelGalileo

ity of Csound, which has been shown to run
on a great variety of platforms, from super-
computers2 to mobile[Lazzarini et al., 2012][Yi
and Lazzarini, 2012] and web[Lazzarini et al.,
2014], and now on embedded systems such as
the Galileo. The hardware and software combi-
nation discussed in this paper has the potential
of opening up a variety of new applications for
electronic music composers and performers.

As a case study, we have developed a com-
plete software image for the system, which al-
lows it to be booted up as an outboard MIDI
synthesizer. This paper is organised as follows:
we first describe the hardware and software en-
vironment that is available to Galileo develop-
ers. We then discuss the details of the port
of the Csound system, and its custom frontend
that takes advantage of the board’s Arduino-
like capabilities. This is followed by a report
on our case study, the MIDI synthesizer. Fi-
nally, we propose some further applications of
the technology.

2 Galileo hardware and software

Galileo boards have been produced under
two slightly different hardware configurations,
namely, original (GEN1, pictured in fig.1),
and a revised specification (GEN2, pictured
in fig.2)3. They generally run under custom,
specially-designed, Linux for embedded systems
images, created and supported by the Yocto
Project4. The board can be booted up from the
flash memory (containing a minimal/small linux
image), or from the SD card, which can contain
more complete operating system images.

2Csound was used as part of two class C projects
at the Irish Centre for High-Performance Computing
(ICHEC) exploring parallel processing for audio

3http://www.intel.ie/content/www/ie/en/
do-it-yourself/galileo-maker-quark-board.html

4https://www.yoctoproject.org
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Figure 1: The Intel Galileo (GEN1) with ethernet and USB connections

2.1 Hardware specifications

The two share some basic attributes that in-
clude a Quark processor, which has the same
instruction set to the Pentium, or i586, CPU,
and contains a single core running at 400
MHz (also known as ‘Clanton’)5, 10/100Mbit
ethernet, PCI Express, USB 2.0 device and
host interfaces, and microSD card reader.
GEN1 boards have a 3.5 mm RS-232 connec-
tor, whereas GEN2 replaces this with a 6-pin
Transistor-Transistor Logic (TTL) Universal
Asynchronous Receiver-Transmitter (UART)
header that is compatible with standard adap-
tors.

The Galileo uses the standard Arduino pin
layout, which includes 20 General-Purpose In-
put/Output (GPIO) pins (6 multiplexed as ana-
log inputs), plus power and Serial Peripheral
Interface (SPI) headers. The hardware imple-
mentation of these is different in GEN1 and
GEN2. In the former, an external GPIO ex-
pander chip (Cypress CY8C9540A) is used to
control most of the pins in the shield, with only
two Quark GPIOs connected directly (accessi-
ble via a multiplexer switch). The latter has
12 Quark GPIOs fully accessible to the head-
ers, and uses a different GPIO expander chip
layout (3 NXP PCAL9535A), mostly to con-
trol multiplexing (leaving eight available for in-

5http://ark.intel.com/products/79084/
Intel-Quark-SoC-X1000-16K-Cache-400-MHz

put/output functions). The Quark GPIOs allow
faster switching performance, through a dedi-
cated software interface. Analog IOs are imple-
mented in GEN1 via an Analog Devices AD7298
ADC IC, providing 12 bits of resolution, and
in GEN2 via a Texas Instruments ADS108S102
IIO-ADC, which is 10-bit (scaled to a 12-bit
range for compatibility purposes). Pulse-width
modulation (PWM) is also implemented differ-
ently on the GEN2 board, providing higher res-
olution.

2.2 Software systems

The board is generally run under a specially-
built Linux OS image, although a Debian-based
system has also recently been tested, and Mi-
crosoft has also provided a cut-down version of
Windows 8 for it. We will discuss here the orig-
inal Linux software that has been designed for
the board. There are two types of Linux im-
ages that are used in the Galileo, based on dif-
ferent versions of the standard C library. The
smaller image, mostly meant to be run from
the limited space in the board flash memory,
is built with uClibc. This library was originally
designed for embedded Linux systems not us-
ing memory management units, but also runs
on standard Linux. The other type of image is
based on eglibc, which was designed for embed-
ded systems but is generally compatible with
the standard glibc. This library is more suit-
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Figure 2: The Intel Galileo (GEN2) with ethernet, USB audio and a potentiometer connected to
analog input 1 (pin A1)

able for SD card-based installations with no size
constraints, as it is more fully-featured and pro-
vides better performance than uClibc. Software
built with the Arduino IDE normally depends
on uClibc, and therefore will not run on an
eglibc image (although the Arduino IDE can be
rebuilt from source to target this).

2.2.1 Development environment

Although it is possible to include all the devel-
opment tools and use the board itself to build
software, it is more advisable to set up a cross-
compiling toolchain on a host computer. This
is done by building an image and the toolchain
from the sources, through a Linux Board Sup-
port Package (BSP) provided by Intel for the
Clanton platform. The BSP is a collection of
scripts (shell scripts, python scripts, recipes,
etc) built with the resources provided by the
Yocto Project, that allows us to build full Linux-
based operating systems for specific embedded
platforms. It uses the bitbake tool to collect all
the information in the various scripts, download
from sources, patch, build, and install the oper-
ating system software. The Galileo Yocto BSP
can be used to build a fully-functional eglibc-
based Linux standard base distribution, and a
Software Developer Kit (SDK) containing a gc-
c/g++ toolchain. Most importantly for us, this
Linux image contains the alsa library, and with
it, we can access soundcards connected via the

USB or PCI Express interfaces.

3 Csound for the Galileo

A fully-functional port of Csound was built for
the Galileo board using the cross-compilation
environment described above. The only two ba-
sic dependencies for Csound are libsndfile (for
soundfile access) and the ALSA library (for re-
altime audio and MIDI). Although the image
built with the provided BSP contains both,
there are still a few issues to be resolved be-
fore we can build the system. Firstly, the cross-
compilation environment installation does not
appear to include the ALSA headers, so these
need to be copied manually from the sysroot in
the Yocto build to the installed toolchain sys-
root.

Secondly, the libsndfile originally provided
by the Yocto build is broken, as it depends on
large file offset support that is not provided
as standard by the system. So we have to
modify the bitbake build recipe (provided in
./poky/meta/recipes-multimedia/libsndfi
le/libsndfile1 1.0.25.bb) to configure
the build with -D FILE OFFSET BITS=64, and
rebuild the image and SDK. With this in place,
we can proceed to build Csound in the usual
manner, using the CMake tools.
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3.1 Custom frontends

In order to access the basic Arduino-like func-
tionality of the Galileo, specific frontends were
developed: gcsound (GEN1) and gcsound2
(GEN2). This functionality can be divided
into two groups: access to analog inputs, and
access to the GPIO digital input and output.
Such connections to the pins on the board is
accomplished via the Linux Sysfs interface.
This provides access to GPIOs via a number of
files under /sys/class/gpio (for digital IO)
and /sys/bus/iio/devices/iio:device0/.
GPIOs need to be exported first by writing their
number to the /sys/class/gpio/export file,
and their direction (“in” or “out”) needs to be
written to /sys/class/gpioN/direction,
where N is the GPIO number. Then
its value (0,1) can be read/written to
/sys/class/gpioN/value. The analog
inputs can be accessed by reading the
/sys/bus/iio/devices/iio:device0/in vol
tageN raw file (values in the range 0 - 4095),
where N is the analog input number (0-5). The
interface expects text (ASCII) characters as
it was originally designed to work with echo
and cat. Note that Sysfs is a regular interface
for all GPIOs, and in order to take advantage
of the fast IO provided by the GPIOs directly
connected to Quark, a different interface
(through /dev/uio0 and ioctl() calls) is
required. This has not yet been implemented
in the two custom frontends.

3.2 Analog inputs

The analog inputs on the Galileo board are
marked A0-A6. These pins are reserved for
this purpose by the gcsound and gcsound2 pro-
grams, ie. they cannot be used for digital input
and output (although there is software support
for this function). These inputs are offered to
Csound orchestra in the software bus channels
named as “analogN” where N is the analog port
number. The application can then read these
channels as required (using chnget). Access to
the analog IO is present throughout the perfor-
mance, continuously, and is implemented asyn-
chronously (ie. non-blocking).

The signal is delivered as a floating-point
number normalised between 0 and 1 (corre-
sponding to a 0 - 5V input range). For instance,
to access a potentiometer connected to the A1
analog input (as shown in fig.2), we use

ksig chnget "analog1"

3.3 Digital input and output

The remaining 14 pins can be used for general-
purpose digital input or output. Access is
provided as requested, through blocking read-
ing/writing operations. This functionality is
implemented as new opcodes in the system:

ival gpin inum
kval gpin inum

gpout ival , inum
gpout kval , inum

where ival and kval are the GPIO values (0
or 1), and inum is the GPIO number.

3.4 Pins and signals

Depending on the board version (GEN1,
GEN2), digital signals at the various pins are
mapped to different GPIO numbers. Access to
some of these require the switching of one or
more multiplex controls (also identified by spe-
cific GPIO numbers). The mapping of pins to
GPIOs and multiplexers is shown below for the
two versions of the Galileo board.

3.4.1 GEN1 board GPIO mapping

Table 1 can be used as reference for the GEN1
board pins and GPIO numbers used. Pins 4
- 9 are directly connected, other pins will re-
quire a multiplexer selector to be set before use.
Most of the GPIO sources are provided through
the Cypress CY8C9540A I/O Expander; two
sources connected directly to the Quark SoC are
available through pins 2 & 3 (as indicated on
Table 1).

For the pins that require multiplexing, the
gpout opcode will need to be used to select the
correct source before accessing the pin from that
source. For instance to access the GPIO for pin
0 and set it to 1, we have to use

gpout 1, 40
gpout 1, 50

so that GPIO 40 accesses the multiplex se-
lector, selecting the source as GPIO 50, and we
then set this to 1.

3.4.2 GEN2 board GPIO mapping

GEN2 board has a significantly different map-
ping scheme, as it employs a different hardware
setup. Most of the 14 GPIO digital IO pins are
connected directly to the Quark SoC, and so
they are controlled in a slightly different way.
In/out direction needs to be switched on for
each pin by a separate GPIO setting. Most
pins are multiplexed, so they also need to be
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Table 1: Pin to GPIO mapping, Galileo GEN1
pin mux selector, value source/function
0 40, 0 UART0 RXD (/dev/ttyS0)

40, 1 50 (GPIO)
1 41, 0 UART0 TXD (/dev/ttyS0)

41, 1 51 (GPIO)
2 31, 0 14 (Quark GPIO)

31, 1 32 (GPIO)
3 30, 0 15 (Quark GPIO)

30, 1 18 (GPIO)
4 - 28 (GPIO)
5 - 17 (GPIO)
6 - 24 (GPIO)
7 - 27 (GPIO)
8 - 26 (GPIO)
9 - 19 (GPIO)
10 42, 0 SPI1 CS (Quark)

42, 1 16 (GPIO)
11 43, 0 SPI1 MOSI (Quark)

43, 1 25 (GPIO)
12 54, 0 SPI MISO (Quark)

54, 1 38 (GPIO)
13 55, 0 SPI SCK (Quark)

55, 1 39 (GPIO)

switched on via another GPIO. In addition, the
board has pullup/pulldown 22k resistors con-
nected to the pins that can be switched on and
off, also through GPIOs. Table 2 shows the
mapping for each pin and their associated GPIO
numbers

The GPIOs controlling the direction of the
Quark GPIO pins are set as 0 = output, 1 =
input. Note that this is not necessary for the
two PCAL9535A GPIO (pins 7 & 8). The re-
sistor GPIO selectors are set as 0 = pulldown,
1 = pullup; if they are set to input, the resis-
tor is disconnected. These allow the voltage to
lower to the ground, or to rise to the operating
voltage (5V), when pins are disconnected.

Multiplex selection works as with GEN1, by
accessing and setting the relevant GPIO, and
if there are mulitplexers involved, both need to
be used. For example, to make the onboard led
(which is connected to pin 13) light up, we need
to set GPIO 46 to 0 to select the Quark GPIO,
then 30 to 0 (output direction), and finally set
7 to 1 (to turn it on). Using this, an instrument
that is equivalent to the Arduino blink sketch
can be written as:

instr blink

kcnt init 0
kLed init 0
gpout 46, 0
gpout 30, 0

if kcnt == 100 then
kLed = (kLed == 0 ? 1 : 0)
gpout kLed , 7
kcnt = 0

endif
kcnt += 1

endin

3.5 Other possibilities

Presently, the Csound frontends gcsound and
gcsound2 do not implement other Arduino-like
capabilities which are available in the system.
These include PWM output, access to SPIO
and Inter-Integrated Circuit (I2C) busses, fast
GPIO, and tty interfaces. It is envisaged that
some of these will be explored in the near fu-
ture for specific applications. For instance, we
plan to take advantage of SPIO connections to
provide integrated audio DAC/ADC capabili-
ties, either via custom or commercially-available
shields. Fast GPIO will be made available
alongside the regular Sysfs implementation, and
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Table 2: Pin to GPIO mapping, Galileo GEN2
pin mux 1, value mux 2, value dir 22k res source/function
0 - - - - UART0 RXD (/dev/ttyS0)

- - 32 33 11 (Quark GPIO)
1 45, 1 - - - UART0 TXD (/dev/ttyS0)

45, 0 - 28 29 12 (Quark GPIO)
2 77, 1 - - - UART1 RXD (/dev/ttyS1)

77, 0 - 34 35 13 (Quark GPIO)
77, 0 - - 35 61 (PCAL9535A GPIO)

3 76, 1 - - - UART1 TXD (/dev/ttyS1)
76, 0 64, 0 16 17 14 (Quark GPIO)
76, 0 64, 0 - 17 62 (PCAL9535A GPIO)

4 - - 36 37 6 (Quark GPIO)
5 66, 0 - 18 19 0 (Quark GPIO)
6 68, 0 - 20 21 1 (Quark GPIO)
7 - - - 39 38 (PCAL9535A GPIO)
8 - - - 41 40 (PCAL9535A GPIO)
9 70 0 - 22 23 4 (Quark GPIO)
10 70, 0 - 26 27 10 (Quark GPIO)
11 44, 1 72, 0 - - SPI MOSI (spidev1.0)

44, 0 72, 0 24 25 5 (Quark GPIO)
12 - - - - SPI MISO (spidev1.0)

- - 42 43 15 (Quark GPIO)
13 46, 1 - - - SPI SCK (spidev1.0)

46, 0 - 30 31 5 (Quark GPIO)

host Galileo hub

MIDI controller

soundcard

USB-�ethernet-� ?

?

Figure 3: The Galileo Synthesizer layout

PWM will also be added to extend the output
capabilities of the Galileo Csound implementa-
tion.

4 Case study: MIDI synthesizer

As a case study to assess the potential of the
Galileo board for music-making, a fully-fledged
MIDI synthesizer was developed. This em-
ploys Csound as the sound engine, interfac-
ing with external USB audio and MIDI hard-

ware. A Csound image for the board was devel-
oped, using the principles outlined in the pre-
vious sections, and including a realtime pre-
emptive kernel. This image can be simply
copied into any microSD card compatible with
the board (sizes between 2 and 32GB). It will
then be ready to use. It contains the stan-
dard Csound command-line frontend csound,
the custom frontends gcsound and gcsound2,
the Csound library (plus some plugin opcodes),
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and the basic MIDI-based orchestra (midisyn-
thesizer.csd).

These files are located in the /home/root di-
rectory. On boot up, the board will start a
Csound process and load midisynthesizer.csd.
This is set to use the default audio USB card
and a MIDI input device, and it contains
three instruments, accessible via MIDI program
change messages. The three instruments are

1. Supersaw synth: a simple design based on
five detuned sawtooth oscillators[Timoney
et al., 2014]. Modulation controls detun-
ing, CC 02 controls envelope attack, and
CC 03 controls envelope release.

2. Pluck string: a Karplus-Strong-
like[Karplus and Strong, 1983] instrument.
Modulation controls brightness, CC 02
controls envelope attack, and CC 03
controls envelope release.

3. Voice: a ModFM[Lazzarini and Timoney,
2010] formant synthesizer. Modulation
controls vowel types, CC 02 controls at-
tack, and CC 03 controls envelope release.

Programs are set circularly to these three in-
struments (PGM mod3), and the synthesizer
works in multimode, ie. it is possible to assign
different programs to different channels. Al-
though in this case study, we did not explore
the possibilities offered by the Arduino-like elec-
tronics interfaces, these can be easily incorpo-
rated in the synthesizer design.

4.1 Testing the synthesizer

There is only a single host USB port on the
board (there is also a client USB port, but this
is used to connect to it from a host computer),
so to use both an audio IO card and a MIDI con-
troller, a hub is required. We tested the Galileo
Synthesizer with a dynex USB hub, to which an
M-Audio Oxygen 25 keyboard, and Behringer
U-Control audio interface were connected. The
synthesizer is generally very responsive, with
low-latency audio output. Depending on the in-
strument, different polyphony limits apply. The
vocal synthesizer is monophonic, but both the
Supersaw and the Pluck string instruments al-
low up to six concomitant voices.

A video showing the synthesizer in action can
be seen in

http://youtu.be/ogYdJsKKxJk

4.2 Connecting to the board

The board is fully accessible via ssh, through
the use of a DHCP server (which can itself
be run in the host computer) (fig.3). This
can be used to debug, develop, and add new
instruments to the existing ones. In this case,
from the host terminal,

$ ssh root@<IP address>

In order to locate the IP address for the
board, you need to have access to the network
router, where you should see it listed alongside
the board MAC address. You can find the board
MACaddress on the top part of the ethernet
socket. Once logged in, vi is available for sim-
ple editing. Files can also be copied to and from
the board via scp. Host connection to the board
is not required for synthesizer operation, as the
board boots up into a Csound process directly.
However, all USB connections should be present
before booting the system.

5 Further applications

The technology described in this article has sig-
nificant potential for further exploitation, be-
yond the simple case study discussed above. In
particular, it has a direct application as a plat-
form for Ubiquitous Music research and prac-
tice[Keller et al., 2015].

5.1 Portable live-electronics platform

For composers who employ live-electronics rigs
regularly, having small, portable devices that
can be used to interact with other performers on
stage is very useful. With the Galileo+Csound
system, it is possible to design various concert
setups, with one or more boards, to deliver
sound synthesis, processing, and audio play-
back. Due to the small size of these devices,
they can be integrated in wearable components,
or into augmented mechanic-electronic instru-
ments.

5.2 Programmable effects units

The Galileo+Csound system can also be the
basis for general-purpose audio processing
“boxes”, as fully programmable effects units.
Because of the presence of a complete music
programming language, it is possible to go be-
yond the usual categories of effects, and include
more advanced signal processing algorithms, in-
cluding frequency-domain methods such as the
phase vocoder and sinusoidal modelling. Cus-
tom controls can be added via the electronics
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interfacing capabilities offered by the board, as
well as the usual MIDI and Open Sound Control
(OSC).

5.3 Internet of Things sound devices

One of the original targets for the development
of Galileo is to meet the potential of the Inter-
net of Things (IoT) concept. Because of its net-
working capabilities (built-in ethernet, and easy
wifi implementation via a PCI card), the board
can be used as a remote sound device. It can run
small web servers, node.js, and similar services,
which can be linked up with the Csound sound
synthesis engine. In addition, Csound can work
as a networked sound server, which is capable
of accepting control directly via UDP messages,
and/or the OSC protocol.

5.4 Low-cost cluster computing for
audio

With the built-in ethernet, it is possible to de-
sign a low-cost cluster, with the use of a net-
work switch. The custom Linux OS image de-
scribed in the earlier sections of this article also
includes the OpenMPI library, which is an im-
plementation of the Message Passing Interface
(MPI), a standard technology for cluster net-
working. With this it is possible to construct a
Cluster-based Csound frontend, that takes ad-
vantage of parallel processing to implement a
high-performance audio engine. Such a setup
would most likely be low cost in comparison to
other comparable alternatives.

6 Conclusions

This paper reported on the implementation
of an audio processing system using the Intel
Galileo development board and Csound, run-
ning under a customised version of Linux for
embedded devices. After a detailed discussion
of the relevant hardware and software environ-
ment, we have explored the porting of Csound
and the development of customised frontends
to access the electronics interfacing capabilities
of the board. A case study based on a sim-
ple MIDI synthesizer was used to demonstrate
the platform as a viable sound and music pro-
gramming environment. The article concluded
with a number of possible application scenarios.
While we have concentrated on a specific em-
bedded platform, the ideas and principles dis-
cussed here can be applied elsewhere. In par-
ticular, we hope to develop similar systems for

the Intel Edison6 in the near future.
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Abstract

This work presents a series of tools to turn Faust
code into various elements ranging from fully func-
tional applications to multi-platform libraries for
real time audio signal processing on iOS and An-
droid. Technical details about their use and function
are provided along with audio latency and perfor-
mance comparisons, and examples of applications.
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1 Introduction

Mobile platforms offer a great opportunity to
the world of open source audio to make sound
synthesis and processing accessible to a wider
audience [Yi and Lazzarini, 2012; Brinkmann et
al., 2011]. The use of smartphones and tablets
as musical instruments is now accepted by a
large number of musicians. Not only are mobile
devices widespread and owned by many, they of-
fer a higher level user interface paradigm than
computers, which often makes them more stable
and simpler to use. In particular, Android de-
vices, which are more open than iPhones and
iPads (§3) offer a good compromise between
open-source, stability, and ease of use.
Faust1 [Orlarey et al., 2002] is a functional

programming language for real-time digital sig-
nal processing (DSP) that generates highly effi-
cient DSP code in a variety of languages (C,
C++, LLVM, asmjs, and more) that can be
compiled into a variety of forms using a sys-
tem of wrappers. These wrappers, called ar-
chitecture files, describe how to adapt the DSP
computation to the external world [Fober et al.,
2011]. Therefore, it is easy to go from Faust
to standalone applications for different kinds of
platforms, Web applications, audio plug-ins, ex-
ternals for music programming languages, and
so on.

1http://faust.grame.fr

This paper presents a series of tools that can
turn Faust code into various elements rang-
ing from fully functional applications to multi-
platform libraries for real-time audio signal pro-
cessing on iOS and Android. Technical details
about their use and function are provided, along
with audio latency and performance compar-
isons, and examples of applications.

2 Faust2api

The main idea of faust2api is to provide iOS
and Android developers with a system that gen-
erates custom high-level APIs for real-time au-
dio signal processing. Even though the APIs
work quite differently “under the hood” on iOS
than on Android, they are accessed similarly on
the two platforms.

The faust2api script operates as a
command-line tool in a shell. A Faust
source file is provided as an argument, along
with the option -ios or -android specifying
the desired architecture, and one or more
source files are created as output (a single
C++ header file for iOS, and a directory
containing both Java and C++ source files for
Android). The library takes care of starting
the audio engine and instantiating the DSP
code, as well as connecting them together.
At the API level, this is all done by the
C++ method init(sr,bs) which takes the
desired sampling-rate and audio buffer-size as
arguments. Computing of the audio process is
launched by a start() method. Finally, the
audio engine can be closed and the memory
freed by simply calling stop().2

On both iOS and Android, the audio pro-
cess runs in its own high-priority thread. The
various parameters of the Faust object can be
accessed and written via getParam(path) and
setParam(path) where the parameter path is

2Detailed documentation of the API can be
found here: https://ccrma.stanford.edu/~rmichon/
mobileFaust/#ref
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the parameter’s path in the user-interface tree
defined in the Faust code (as discussed further
below in §3.3 on OSC and MIDI support).

If the Faust object provided to faust2api
has no inputs, and has freq, gain, and gate
parameters defined, it is considered as an instru-
ment and automatically made polyphonic. The
different voices (eight by default, but this can
be changed) can be triggered using a keyOn()
method that takes a MIDI note number and
MIDI velocity as an argument. This method is
linked to the freq, gain, and gate parameters
(§3.1) and allocates a new voice every time it is
called. The keyOff() method sets the gate pa-
rameter of the voice to zero and waits until the
level of the voice falls below -60 dB to deallocate
it.

2.1 iOS

The command “faust2api -ios
faustCode.dsp” will generate a single
C++ header file that can be included in
any iOS app project. The API relies on the
AVAudioSession3 framework to connect to the
audio engine.

“Touch to sound” and “round-trip” latency
measurements for iOS audio applications gener-
ated by faust2api were carried out on an iPad2
and an iPhone5 (Fig. 1).

Device Touch to Sound Round-Trip

iPhone5 36 ms 13 ms
iPad2 45 ms 15 ms

Figure 1: Audio Latency for Different iOS De-
vices Using the Faust Library.

“Round-trip” latency was measured by creat-
ing a simple app that just plays back any sound
that comes to its audio input (in our case, the
audio input jack) and by comparing how long it
takes for the iOS device to play back an impulse
sent to this app.

“Touch to sound” latency was measured by
creating a simple test app where a button on
the screen is used to trigger an impulse. The
audio output jack of the iOS device was con-
nected to an ADC4 in order to be able to record
the impulse on a computer. A microphone con-
nected to the same ADC on a different channel

3https://developer.apple.com/library/ios/-
documentation/AVFoundation/Reference/-
AVAudioSession ClassReference/index.html#//-
apple ref/occ/cl/AVAudioSession

4Analog to Digital Converter

was placed at the top of the screen of the de-
vice. The latency measurements were carried
out by measuring the time difference between
the “acoustic” impulse detected by the micro-
phone and the synthesized one (Fig. 2).

iPad

ADC Time Difference

Audio Jack Out

Figure 2: Touch to Sound Audio Latency Mea-
surement Set-Up.

2.2 Android

faust2api is slightly more complex to use
on Android than iOS. Indeed, Android apps
are primarily programmed in Java. However,
this language is not very well suited for real
time DSP so most of the library generated by
faust2api is written in C++ with a Java in-
terface.

The audio engine is accessed, controlled and
connected to the DSP code generated by Faust
on the “native” side of the library where ev-
erything is computed in a high-priority thread.
This allows the signal processing part of the app
to be fully independent from the Java side.

The native portion of the library is compiled
as a shared library using the Android NDK5 and
can be controlled in Java using a JNI6 interface
generated by SWIG.7 More details about the
way this system works can be found in [Michon,
2013].

In practice, faust2api will generate the An-
droid API by using the -android option instead
of -ios (cf. previous section) and will provide
a set of Java and C++ files to be copied in the
Android app project.8

5Native Development Toolkit:
https://developer.android.com/tools/sdk/ndk/

6Java Native Interface
7Simplified Wrapper and Interface Generator:

http://www.swig.org/
8A tutorial on how to do this can be found

here: https://ccrma.stanford.edu/~rmichon/
mobileFaust/#f2apAndroid
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Latency measurements using the same tech-
niques presented in the previous section were
carried out on a Samsung Galaxy S5, a Google
Nexus 5, and a Google Nexus 7 that were all
running on Android 5.0 (Lollipop). It is difficult
to make a complete comparison here in the same
way as for iOS because latency varies greatly
between devices and manufacturers. The main
observation that can be made though is that
audio latency is much larger on Android than
iOS.

Device Touch to Round-
Sound Trip

Samsung Galaxy S5 72 ms 78 ms
Google Nexus 5 90 ms 92 ms
Google Nexus 7 130 ms 130 ms

Figure 3: Audio Latency of Different Android
Devices Using the Faust Library.

Faust Program C++ DSP CodeFaust Compilation

OpenSL ES

Faust Poly

Custom Audio Library

Android Architecture 
(C++ Wrapper)

Core Audio

Faust Poly

Custom Audio Library

iOS Architecture 
(C++ Wrapper)

IOS C++ Library

Shared Library

Wrapping (iOS)

JAVA Interface to
The Shared Library

Wrapping (Android)

Figure 4: faust2api Overview.

3 Faust2android

While a preliminary version of faust2android
was presented in [Michon, 2013] it has been to-
tally rewritten since then and offers a large num-
ber of new functionalities.
faust2android is built on top of faust2api

(Fig. 9). Its user interface is constructed using
the JSON description provided by the shared
library generated by faust2api. All the stan-
dard Faust UI elements are available: horizon-
tal and vertical groups, horizontal and vertical
sliders, numerical entries, knobs, checkboxes,
buttons, drop-down menus, radio buttons, bar-
graphs, etc. Some examples are shown in figure
5. The values of the parameters of the audio
process running on the native side are changed
using the setParam() function of the API.

Figure 5: Example of interface generated
by faust2android containing groups, sliders,
knobs and checkboxes.

3.1 Keyboard and Multitouch Interface

faust2android allows assignment of more in-
teractive interfaces to the Faust process. For
that, three different metadata items can be
added to the top-level group of a Faust pro-
gram. In Faust, a metadata item consists
of a key:value pair, specified between square
brackets within a title string, i.e., "Some Title
[key:value]...".

The [style:keyboard] metadata item spec-
ifies that the freq, gain, and gate parameters
in the Faust code should be assigned to a pi-
ano keyboard that can be opened by touching
the “keyboard icon” in the top right corner of
the app. Also, these three parameters will be
automatically removed from the main interface
for controlling the other parameters.

The following example program illustrates a
simple usage:

import("music.lib");
s = button("gate");
g = hslider("gain",0.1,0,1,0.001);
f = hslider("freq",100,20,10000,1);
process = vgroup("[style:keyboard]",

s*g*osc(f));

This interface uses the polyphonic capabili-
ties of faust2api. Touching a key on the key-
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board determines the reference pitch of the note
but sliding the finger across the X axis of the
screen allows the user to continuously control
it. The Y axis determines the gain of the note.
If a MIDI keyboard is plugged into the Android
device, it will be able to control the keyboard
interface (§3.3).

The [style:multi] metadata item will cre-
ate a simple interface in which parameters are
represented by moveable dots on the screen.
Each dot can have two parameters assigned to
it, corresponding to x and y screen coordinates.
This interface can also be opened by touching
the keyboard icon on the top right corner of the
screen. Parameters are linked to the interface
via [multi:x] metadata where x is the ID of
the parameter in the interface. For example,
the Faust program

import("music.lib");
freq = hslider("freq[multi:0]",

440,50,2000,0.1);
process = hgroup("[style:multi]",

osc(freq));

creates an app in which the frequency param-
eter of a sine oscillator is controlled by the X
axis of the dot in the multitouch interface. Pa-
rameters that have the accelerometer assigned
to them (cf. §3.2) will continue to be driven by
the accelerometer in the interface.

Finally, the [style:multikeyboard] meta-
data combines the keyboard and multitouch in-
terface into one (Fig. 6).

Figure 6: Example of “Multi-Keyboard”
Interface of an Application Generated by
faust2android.

3.2 Using the Built-In Accelerometer

The Accelerometer can be used to control some
elements of the user interface. Assignments are
made in the Accelerometer Parameters panel

that can be opened by holding the label of a
parameter for more than one second (Fig. 7).
From here, the mapping of an accelerometer to a
parameter can be configured precisely to create
complex linear and non-linear behaviors. For
instance, the user can choose which axis will
control the parameter (x, y, or z), its motion
orientation, and sensitivity.

Three different modes can be used to control
the orientation of the accelerometer, normal, in-
verted, and bell. In bell mode, the maximum
value of the accelerometer is output when it is
in center position and the minimum value when
it is fully inclined to the left or right.

Sensitivity can be configured with three dif-
ferent parameters, min, max, and center, that
are all expressed in m/s2 × 10−1. As an exam-
ple, setting min to -1, max to 1, and center to
0 will create a linear behavior where the mini-
mum value of the parameter being controlled is
given at position -90 degrees and the maximum
value at position +90 degrees. Any acceleration
beyond these limits will be clipped.

All these parameters can be configured from
the Faust code using metadata by specifying
[acc: a b c d e], where a is the axis (0 for
x, 1 for y, 2 for z), b the orientation (0 for nor-
mal, 1 for inverted, 2 for bell), c the minimum,
d the maximum and e the center.

Raw data from the accelerometers are passed
directly to the Faust audio process. Filtering
can be carried out in Faust which is better
suited for that kind of task than Java.

Finally, the accelerometer parameters win-
dow is only accessible if the app is unlocked by
touching the “lock” icon on the top right cor-
ner of the screen (Fig. 5). Apps can be locked
to prevent users from opening a configuration
window or rotating the screen during a perfor-
mance.

Figure 7: Accelerometer Configuration Panel of
an Application Generated by faust2android.
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3.3 OSC and MIDI Support

OSC support is enabled by default for all
the parameters of applications generated by
faust2android. The OSC address of a parame-
ter corresponds to the path to this parameter in
the Faust code. For example, the OSC address
of the freq parameter of the Faust code

freq = hslider("freq",
440,50,2000,0.1);

process = hgroup("Main",osc(freq));

will be /Main/freq.
MIDI support is also enabled by default

in apps generated by faust2android. MIDI
Key Number is automatically mapped to the
freq parameter by converting it to frequency
in Hz, and similarly MIDI velocity → gain.
Note on/off events control the gate parame-
ter, just like the keyOn() and keyOff() func-
tions of faust2api. Synthesizer apps gener-
ated with faust2android all have eight voices
of polyphony.

MIDI control numbers can be assigned to spe-
cific parameters from the Faust code using the
[midictl:x] metadata where x is the MIDI
control number.

3.4 Audio IO Configuration

Android applications generated with
faust2android automatically choose the
best sampling rate and buffer size as a function
of the device that is running them (for Nexus9

devices only). Indeed, it was explained during
the Google I/O 2013 conference on High
Performance Audio10 that Android phones and
tablets achieve better audio latency perfor-
mance if they run with a specific buffer size and
sampling rate (see Fig. 8). Users may override
these default values in the settings menu of the
app.

Device Sampling Rate Buffer Size

Nexus S 44100 880
Galaxy Nexus 44100 144
Nexus 4 44100 240
Nexus 7 44100 512
Nexus 10 44100 256
Others 44100 512

Figure 8: Preferred Buffer Sizes and Sampling
Rates for Various Android Devices.

9http://www.google.com/nexus/
10http://youtu.be/d3kfEeMZ65c

Faust Program (.dsp file)

Shared Library JAVA Interface to
the Shared Library

User Interface

Sensors OSC/MIDI

Controller Interfaces

Faust Compilation (cf. faust2api diagram)

Native Thread

Audio Out Com through JNI

JAVA Thread

Figure 9: faust2android Overview.

3.5 Easy App Generation

While it is relatively simple to use
faust2android, it requires the programmer
to have an important number of dependencies
installed (Android SDK and NDK, etc.).
However, FaustLive [Denoux et al., 2014]
and the Faust Online Compiler [Michon and
Orlarey, 2012] make the process of turning
Faust code into an Android application very
simple. Indeed, when the user chooses to
compile a Faust program as an Android app, a
QR code pointing to the generated app package
is displayed that can be scanned by the device
where the user want the app to be installed.

4 Applications

The Faust distribution contains a collection of
libraries that implement a large number of com-
mon and less-common audio effects, filters, and
synthesizers. With faust2api, iOS and An-
droid programmers who don’t know signal pro-
cessing or who never worked with real-time au-
dio can easily integrate any of the pre-written
Faust modules into their project without hav-
ing to write a single line of DSP code. On
the other hand, this tool also gives the op-
portunity to Faust developers to have their
work used by more people. A concrete use of
this tool was made this year in the Music 256b
class11 “Mobile Music” offered at Stanford Uni-
versity’s Center for Computer Research in Mu-
sic and Acoustics (CCRMA)12 where students
were given the opportunity to use faust2api in
their final projects.

Another use of applications generated by
faust2android and faust2ios is the Smart-
Faust13 project led by Xavier Garcia and
Christophe Lebreton at GRAME. The idea was

11https://ccrma.stanford.edu/courses/
256b-winter-2015/

12http://ccrma.stanford.edu
13http://www.grame.fr/anything_slides/

concert-smartfaust
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to make a series of concerts where the music is
made by the audience with their mobile phones.
Several applications were put on the Apple Store
and the Google Play Store that people could
download prior to the concert. This project led
to more metadata for controlling the user in-
terfaces; for example, it is possible to choose to
not integrate a UI element to the interface. This
enables the Faust programmer to control some
specific parameters with the accelerometer (us-
ing metadata too) without displaying them in
the interface. faust2android can also generate
“concert apps”, where the user can switch be-
tween different Faust objects within the same
application.

5 Conclusions

Several tools that use Faust to help design
or make ready-to-use Android and iOS appli-
cations were presented. We believe that they
make the development of musical applications
on mobile platforms easier and that they will
contribute to making the use of Faust objects
more accessible to musicians and performers.

While iOS real-time audio applications pro-
vide much better (smaller) audio latency than
Android, the various restrictions imposed by
Apple on their deployment makes them less ac-
cessible which is a big issue for the use that we
make of them with Faust. Therefore, we hope
that Google will resolve the audio latency issues
for Android applications in the near future.
FaustLive and the Online Compiler provide

easy ways to use the tools presented in this pa-
per. However, we think that enhancing them
with an online platform where Faust develop-
ers can easily share their work with others in
order to create a repository of Faust resources
would be a great addition.
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Abstract
We address the question of what software verifica-
tion can do for the audio community by showcasing
some preliminary design ideas and tools for a new
framework dedicated to the formal reasoning about
Faust programs. We use as a foundation one of the
strongest current proof assistants, namely Coq com-
bined with SSReflect. We illustrate the practical
impact of our approach via a use case, namely the
proof that the implementation of a simple low-pass
filter written in the Faust audio programming lan-
guage indeed meets one of its specification properties.

The paper thus serves three purposes: (1) to pro-
vide a gentle introduction to the use of formal tools
to the audio community, (2) to put forward program-
ming and formal reasoning paradigms we think are
well suited to the audio domain and (3) to illustrate
this approach on a simple yet practical audio signal
processing example, a low-pass filter.

Keywords
DSP; audio; program verification; theorem proving

1 Introduction
Formal program verification is gaining strong
support in the computer programming world
with projects such as the CompCert certified
C compiler [Leroy, 2009], with more and more
tools such as the Coq1 proof assistant striving
to ease the development of correctness proofs for
hopefully the every-day programmer.
While there has been some work in the

mathematical correctness of DSP — see for in-
stance [Krishnaswami, 2013; Brunel et al., 2014]
for type-based techniques, and [Souari et al.,
2014; Ghafari et al., 2011] for approaches using
theorem proving — formal verification is still
largely absent in the DSP and Computer Music
(CM) communities. Yet, users and musicians are
always striving for ever better sound experience
and audio realism. Thus, ensuring the adequacy
between an intended audio specification, for in-
stance some sort of a limited-bandwidth filtering,

1coq.inria.fr

and its actual implementation, along with other
key properties such as robustness [Chaudhuri
et al., 2012] or Bounded-Input Bounded-Output
(BIBO) stability, is warranted. Too often, the
only correctness test performed is to check that
“it sounds about right”, which is a methodology
that clearly deserves some improvements.
The overall goal of our paper is to provide

a case for the introduction of tools and best
practices dedicated to the formal mathematical
reasoning about audio/sound application pro-
grams. We illustrate this vision via the use
of Coq/SSReflect for the Faust audio lan-
guage2. We introduce a new framework for math-
ematically reasoning about Faust audio pro-
grams. We show how simple properties can be
already proven for some Faust filtering applica-
tions using such an approach, thus paving the
way to the future introduction of dedicated proof
techniques for audio processing systems.
This paper is structured as follows. In Sec-

tion 2, we introduce the Coq proof assistant
and its SSReflect extension, which we use all
along. Section 3 describes the Faust language
core, using a low-pass filter as an example, while
Section 4 provides a Coq implementation. We
introduce in Section 5 a specific logic that will
help reasoning about Faust programs. We fi-
nally put these tools into good use in Section 6,
where we show how the low-pass filter can be
proven equivalent to its specification. We discuss
future work and conclude in Section 7.

2 A Coq/SSReflect Tour
Coq [Bertot and Castéran, 2004] is a software
development environment in which programmers
can write functional programs and prove proper-
ties about them. Coq’s programming language
Gallina is very similar to other functional pro-
gramming languages like Ocaml, but with some
added restrictions (in particular, all Coq pro-

2http://faust.grame.fr
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grams must terminate) and a more advanced
type system. Coq is a strongly-typed language;
in particular, a type is understood as a property
P , and an expression e of type P , written e : P,
is the proof for P .

SSReflect [Gonthier et al., 2008] is a proof
language and extensive library built on top of
Coq. It promotes a structured style of pro-
gramming and facilitates proof development by
profiting from the fact that many properties of
interest can be expressed as programs of type
boolean.
Recursive Definitions We will illustrate
some basics of the SSReflect’s proof language
by proving a toy property over a toy program-
ming language. We first load some required
libraries:
Require Import ssrfun ssrbool eqtype ssrnat.

The Abstract Syntax Tree (AST) of our toy pro-
gramming language is defined in Coq with the
Inductive command:
Inductive exp : Type :=
| cst : nat Ñ exp
| mul : exp Ñ exp Ñ exp.
Notation "’ n" := (cst n).
Notation "a ˆb" := (mul a b).

which declares the recursive (so-called inductive)
type exp with two constructors, cst for embed-
ding natural integer constants, and mul for the
multiplication of two expressions. Coq provides
support to declare convenient notations such as
ˆ for the multiplication operation.
Recursive functions are declared in Coq us-

ing the Fixpoint command. Then, the value of
an expression in our toy language is defined by
recursion over its structure:
Fixpoint eval (e : exp) : nat :=
match e with
| ’n => n
| e1 ˆ e2 => eval e1 ∗ eval e2

end.

We can run our program with the Eval com-
mand:
Eval compute in eval (’2 ˆ(’0 ˆ ’3)).

which will display, as expected, 0. Going one step
further, Ocaml code can be generated automati-
cally from Coq programs, providing reasonably
efficient and provably-correct implementations
of the specified algorithms.
Proving Properties Following upon our pre-
vious simple test, assume we want now to
prove the following, 0-absorbing property, named
eval0eB: all expressions e that contain a ’0

subexpression evaluate to 0. We can write a
boolean function mem_exp that checks if ’0 oc-
curs in an expression e easily3:
Fixpoint mem_exp m e :=
match e with
| ’n => n == m
| e1 ˆ e2 => mem_exp m e1 || mem_exp m e2

end.

Theorem eval0eB is rephrased now as: for all
expressions e, if mem_exp 0 e is true, then eval
e is 0. Let’s begin by proving an easier property
for constant expressions; it is stated here in Coq
as Lemma eval0cB, followed by its proof:
Lemma eval0cB :
forall n, mem_exp 0 (’n) Ñ eval (’n) == 0.

Proof. by move=> n /=; exact. Qed.

In addition to programming in Gallina, we can
also use automated program building procedures
called tactics. We can use an interactive proof
editor such as Proof General of CoqIDE to step
from Proof to Qed; after each tactic (terminated
by a .), the current proof state is displayed. The
proof state consists of a set of hypotheses e : t
(the “context”) and a goal g which should be seen
as a stack of properties p0->....->pn->g. Most
SSReflect tactics tac can perform context ma-
nipulation operations before and after running.
tac: x will remove a named hypotheses x : p from
the context, pushing p to the goal before tac is
run; tac => x will pop the top of the goal af-
ter tac is run, naming it x. Thus, if p0->A is
the current goal, move=> x will add x : p0 to the
context. Plenty of additional operations can be
performed in addition to moving.
The previous proof started with the

documentation-only Proof command, getting
the goal:
forall n, mem_exp 0 (’n) Ñ eval (’n) == 0.

with an empty context. The first step is to
move n to the context with move=> n /=. The /=
switch asks Coq to perform partial evaluation of
the goal, resulting in a new goal n == 0 Ñ n == 0,
which the exact tactic solves. Finally, Qed
checks that the proof is correct, and, as for all
previous function and type definitions, eval0cB
is added to the global context for further use.

Moving then to our full theorem, we state:
Theorem eval0eB :
forall e, mem_exp 0 e Ñ eval e == 0.

Proof.
elim.
´ by apply: eval0cB.
´ move=> e1 H1 e2 H2 /=.

3Coq uses type inference to get the types of m and e.
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case/orP=> [/H1 | /H2] /eqP Ñ .
+ by rewrite mul0n.
+ by rewrite muln0.

Qed.

Here, the proof starts by performing induction
on the structure of expressions. The induction
tactic elim operates on the top of the goal, which
in this case is the expression e. The base and
inductive subgoals are generated, displayed as:
subgoal 1 (ID 18) is:
forall n : nat, mem_exp 0 (’ n) Ñ

eval (’ n) == 0

subgoal 2 (ID 19) is:
forall e : exp,
(mem_exp 0 e Ñ eval e == 0) Ñ
forall e0 : exp,
(mem_exp 0 e0 Ñ eval e0 == 0) Ñ
mem_exp 0 (e ˆe0) Ñ eval (e ˆe0) == 0

We must prove each goal separately (the - and
+ symbols indicate a new proof step). The base
case is dealt with by first using Lemma eval0cB
from the global context with the apply tactic
(the by so-called “closing tactical” ensures that
the current goal is finished). In the inductive
case, the goal includes the facts that eval0eB is
true on each subexpression, named here e and
e0 by Coq. We first move e and e0, renamed
e1 and e2, to the context, each followed by its
induction hypotheses Hi, before performing a
partial evaluation. After the move, we have the
following proof state:
e1 : exp
H1 : mem_exp 0 e1 Ñ eval e1 == 0
e2 : exp
H2 : mem_exp 0 e2 Ñ eval e2 == 0
============================
mem_exp 0 e1 || mem_exp 0 e2 Ñ

eval e1 ∗ eval e2 == 0

The top of the goal is a boolean disjunction,
on which we can perform case analysis using
the case tactic with the orP view. Each of the
two resulting cases happen to be the premise of
the induction hypotheses, H1 and H2; thus the
disjunctive pattern [/H1|/H2] will rewrite the goal
to:
eval e1 == 0 Ñ eval e1 ∗ eval e2 == 0

and similarly for e2. The pattern /eqPÑ will
rewrite eval e1 to 0 in the goal obtaining a goal
of 0 ∗ eval e2 == 0.
This particular step is paradigmatic of the

“proof by rewriting” technique: from a property
a = b, we can replace all a terms occurring in the
goal by b. The final step of the proof is again by
rewriting, this time using the mul0n and muln0

lemmas part of the ssrnat library, with type
mul0n : forall x, 0 ∗ x = 0 and symmetrically.

Rewriting Magic SSReflect’s emphasis on
boolean expressions fosters proof by rewriting in
arithmetic proofs. For instance, in the following
lemma:
Lemma leq_2add :
forall (x y : nat), x <= y Ñ x + x <= y + y.

Proof. by move=> x y xy; rewrite leq_add. Qed.

the proof, where “ ; ” combines proof steps, is done
by rewriting with the leq_add lemma, provided
by the ssrnat library, of type:
leq_add : forall (m1 m2 n1 n2 : nat),

m1 <= n1 Ñ m2 <= n2 Ñ m1 + m2 <= n1 + n2

How could that happen? Equalities do not seem
to occur in the conclusion of leq_add, but they
have actually just been removed by the pretty
printer. In fact, the exact conclusion is a boolean
equality, namely m1 + m2 <= n1 + n2 = true, as
the resulting type of the <= operator is
boolean. Thus, x + x <= y + y = true can be
easily matched and rewritten to true with proper
bindings of leq_add variables, leading to the goal
true = true.

Going Further It is obviously impossible to
give a complete overview of SSReflect in two
pages. In particular, SSReflect advocates par-
ticular conventions and coding styles that we
did not fully follow for the sake of space and
pedagogy. In particular, the idiomatic proof for
Theorem eval0eB is:
by elim=> //= ? IH1 ? IH2 /orP

[/IH1|/IH2] /eqP Ñ ; rewrite ?(mul0n, muln0).

The Mathematical Components library is a com-
panion project to SSReflect, and includes
extensive libraries about finite groups, algebra,
number theory and more, which have been used
to formally prove significant large theorems like
the Four Color or Feit-Thompson theorems.

3 The Faust Audio Language
Faust— which stands for “Functional Audio
Stream” — is a DSP language [Orlarey et al.,
2004]. Faust’s main focus is the fast develop-
ment of efficient digital audio programs, and has
been used in live performances and offline and
online audio applications, such as FaustLive [De-
noux et al., 2014] or moForte 4. It has also been
used in other signal processing contexts [Barkati
et al., 2014].

4www.moforte.com/
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Framework Faust programs are structured
in two layers. The high-level layer is a macro lan-
guage corresponding to an untyped, full-fledged
functional language. It is used to generate pro-
grams written in the Core Faust syntax, where
only a few primitives are available. In order
to deal with the real-time constraints imposed
by audio processing, Faust programs are then
optimized and compiled towards an efficient lan-
guage; Faust’s main compiler generates C++
code, while alternative backends can now gener-
ate other formats, such as asm.js code.

While the core language is unpractical for writ-
ing real applications, it contains enough prim-
itives for the rest of this paper. Moreover, it
enjoys a strong type system and operational se-
mantics. For a more precise description of Faust
syntax and semantics, we refer the reader to [Jou-
velot and Orlarey, 2011].

Semantics Signal processors are Faust’s key
components. A signal is a (potentially infinite)
stream of amplitude values. In the discrete case,
we can represent signals as functions from (dis-
crete) time to real numbers. Formally, we write
S for the function space NÑ R. We assume that
signals have amplitude 0 when time is negative.
Signal processors from i inputs to o outputs are
functions in Si Ñ So, and every valid Faust
program can be interpreted as a function of this
type. We use “semantics brackets” to denote
the function that maps a Faust program to its
mathematical interpretation. For instance, the
delay processor, which delays its input signal by
1 audio sample, is denoted as:

JdelayKpiqpnq “ ipn´ 1q.
The first argument i is the signal to be delayed,
and n represents time. Then, delay will simply
return the sample from i corresponding to the
previous time value.

Core Faust For the purposes of this paper,
we focus on a minimal but functional subset
of Faust consisting of three particular signal
processor-building blocks: primitives, composi-
tion, and feedback.

Examples of primitive signal processors are +,
which takes as input two signals and outputs a
signal with amplitude the sum of the input signal
amplitudes, or ∗(c), that scales the amplitude by
a constant factor c. Formally:

J`Kpi1, i2qpnq “ i1pnq ` i2pnq
J˚pcqKpi1qpnq “ c ˚ i1pnq.

Figure 1: Simple Feedback in Faust

We write f : g for the composition of signal
processors f and g:

Jf : gKpiq “ JgKpJfKpiqq.
The interesting construction is feedback, writ-

ten as f „ g. In this case, f is assumed be a
processor from two signals to one, and g, a unary
signal processor. Then, f „ g represents the 1-
delay feedback loop through g.

Jf „ gKpiq “ JfKpJgKpJf „ gKpJdelayKpiqqq, iq.
Note that the definition of the semantics of feed-
back is recursive. For example, the Faust pro-
gram + „ sin is depicted in Figure 1.
A Simple Low-Pass Filter For the rest of
the paper, we will work with a simple low-pass
filter written in Faust as:
smooth(c) = ∗(1 ´ c) :+ „∗(c).

smooth is intended to be used with a coefficient
c in the interval r0, 1s. If c is 0, then the filter
has no effect, whereas as we increase c the cutoff
frequency decreases, with a limit case of c “
1, that outputs a constant signal. The filter
first multiplies the input amplitude by 1 ´ c,
then to perform 1-sample additive feedback with
coefficient c. Its block diagram with c “ 0.9 is
drawn in Figure 2.
While this filter may not be very adequate

for audio, due to its frequency response curve,
it is useful for instance for smoothing control
parameters, and for other applications with high-
frequency components. A key property of filters
is stability. That is to say, we expect smooth’s
output amplitude to remain in bounds that de-
pend on the input. An excessive amount of
feedback could cause the filter to behave badly.
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Figure 2: The smooth Low-Pass Filter

Stability also helps in compilation, as bounds
known in the input signal can be propagated to
the output, helping with buffer allocation and
other issues.

4 Formalizing Faust in Coq
In the previous section, we described a core sub-
set of Faust on paper. In this section, our goal
will be to replicate this description inside a mech-
anized framework, Coq. This will enable us to
latermechanically reason about Faust programs,
avoiding a lot of potential error sources and get-
ting strong confidence on the soundness of our
reasoning.

Overview Mechanized reasoning about pro-
grams requires to encode their behavior or seman-
tics in the particular theorem prover of choice.
In a sense, this is equivalent to defining an in-
terpreter ; however the idiosyncrasy of theorem
proving often makes the process quite different
from writing a regular interpreter or compiler for
our language.
Once the semantic representation is in place,

we can wonder whether two programs have the
same behavior (read: semantics), what happens
when the input does not meet certain criteria,
etc.
The concrete tasks we need to complete in

order to start reasoning about Faust programs
in Coq are: a) define a representation of Faust
syntax in Coq; b) define a representation for
signals, or streams, in Coq; c) write a function
that takes a program’s AST and returns a stream
processor.

Once this is done, we can start proving! How-
ever, a key point in theorem proving is how con-
venient will it be to write proofs. We would
have a hard time justifying formalized reason-

ing if we needed thousand of hours and lines
of proof to perform trivial reasoning. We will
address this point in Section 5, while devot-
ing the rest of this one to explain how Faust
is embedded into Coq. All the Coq code
and examples can be downloaded from https:
//github.com/ejgallego/mini-faust-coq/.

Faust AST in Coq We will encode the syn-
tax of the program using an algebraic or inductive
data type. ADT (Abstract Data Types) are one
of the most powerful features of Coq, allowing
the user to define new richly-typed datatypes.
In Section 2, we saw an example of an ADT for
expressions. Here, we will make use of an extra
feature known as indexed or dependently-typed
ADT. Thus, we will encode Faust expressions
using the fterm datatype, which carries addi-
tional information about the number of input
and output signals of the program:

Inductive fterm : nat Ñ nat Ñ Type :=
| mult : num Ñ 1  1
| plus : 2  1
| comp : 1  1 Ñ 1  1 Ñ 1  1
| feed : 2  1 Ñ 1  1 Ñ 1  1
where "i  o" := (fterm i o).

Notation "’+" := plus.
Notation "’∗(c)" := (mult c).
Notation "f : g" := (comp f g).
Notation "f ~ g" := (feed f g).

Thus, a program of type i  o will exactly go
from i to o channels. Note that the constructors
that correspond to the primitives enforce this
requirement. In particular two signal processors
can be composed only if they have the right
types; thus no ill-typed Faust program can be
built. We also define some notations to make
display nicer.
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Now, we can define our simple low-pass filter
as follows:
Def smooth c : 1  1 := ’∗(1 ´ c) : ’+ ~ ’∗(c).

Streams in Coq Once we have defined the
syntax of our Faust programs, the next step is
to define their semantics. We will encode signals
as finite-length sequences of reals. We could
have used several other representations, but it
is beyond the scope of this paper to discuss the
advantages of this particular definition.
We will index signals by their length, using

the SSReflect type n.´tuple R, the type of
sequences of exactly n reals. We write ’S_n for
n.´tuple R to shorten notation. Signal proces-
sors are encoded using regular Coq functions:
Notation "’S_n" := (n.´tuple R).
Notation "’SP(i,o)" := (@ n, ’S_n^i Ñ ’S_n^o).

For instance, the type for signals with three
samples is ’S_3. A signal processor (of type
"’SP(i,o)") must be able to process signals of
arbitrary length; thus we quantify the second
definition on all lengths n. We write ’S_n^k for
k copies of ’S_n, e.g., ’S_n^2 is (’ S_n ∗ ’S_n).
Interpretation Function With both syntax
and semantics in place, we can define a function
linking the two worlds. In our case, a Faust
expression of type i  o will be interpreted by a
Coq function of type @ n, ’S_n^i Ñ ’S_n^o. Our
interpreter I will thus have type:
I : i  o Ñ ’SP(i, o)

Given a program f, the resulting function I f
is effective, that is to say, given input signals, it
computes the corresponding output ones. In par-
ticular, I f n formally corresponds to the seman-
tic brackets introduced in Section 3, restricted
to the first n samples of the signal. We write
JfK|n for this truncated semantics.
How is I defined? Definition for primitives

and composition is straightforward; the most
interesting case is the feedback:
Definition I_feedback f g n i :=
iter n (fun fb => f (g (x0 :: fb), i)) [::].

where x0 is the initial value for the feedback
loop, usually 0, and iter n f x is the function
that applies f n times to x.

Note that this function outputs a signal of size
n when the input is of size n, and does so by
computing the feedback for n steps. The reader
familiar with signal processing will notice that
this implementation is extremely inefficient, as
it may take quadratic time even for simple pro-
grams! Indeed, the goal of our interpretation is

not to achieve efficiency, but to have a convenient
representation of the semantics in order to reason
about it. Usually, efficient implementations are
not very well-suited for reasoning and vice-versa.
The usual remedy when we care about efficiency
inside Coq is to define two implementations, and
prove them equivalent [Dénès et al., 2012].
First Steps in Proving With those ingredi-
ents, we can start reasoning about programs. For
instance, a proof of the fusion property of the
multiplication stream processors is:
(∗ Fusion of mult ∗)
Lemma multF : I (’∗(a) : ’∗(b)) = I (’∗(a∗b)).
Proof.
apply: val_inj; case: i => s /= _.
by elim: s => //= x s Ñ ; rewrite mulrCA mulrA.

Qed.

The proof is straightforward, by induction, as-
sociativity, and commutativity of the multipli-
cation operator of the real numbers. However,
some amount of boilerplate is necessary to set
up the induction, task that can get tricky with
more complex programs. Indeed, this inductive
proof method is common to most proofs; thus
we will identify common patterns and will define
higher-level reasoning principles that allow us to
prove things with less effort in the next section.

5 Structured Reasoning: A Sample
Logic

As we just saw in Section 4, the Coq semantics
allow us to state — and attempt to prove —
almost any property imaginable about Faust
programs. However, in most cases, reasoning can
be repetitive, long and error-prone. That is the
price we have to pay for accessing such a power.
A key observation is that proofs of certain

classes of properties share common parts, while
only a minor part of the proof actually depends
on the property. As we saw in the previous fusion
case, the relevant part of the proof is less than
10% of its total code.

Imagine a property ϕ, supposed to hold for all
samples of a signal. Then, it is enough to define
ϕ as a predicate over one sample, and we can
“automatically” lift the predicate over signals,
checking that ϕ holds for all time.
Indeed, to illustrate the principles of high-

level structured reasoning over programs, we will
focus on such “sample-level” properties in this
section. While we will sacrifice quite a bit of
expressivity, by limiting our language to one-
sample statements, this will still be enough to
carry out proofs of stability and will significantly

90



facilitate our proofs, allowing us to proceed in a
short and structured way.
Sample-level Properties For our purposes,
a predicate over a sample is a function from
reals to booleans, ϕ,ψ P R Ñ B, or, in Coq,
P, Q : R Ñ bool. Then5, we say a property ϕ
holds for a signal s if @n.ϕpsrnsq; that is, for
all time moments n, the sample meets ϕ. In
Coq, we can use the all function for sequences,
thus writing all P s. For instance, the prop-
erty that a signal is bound by the interval ra, bs
is defined as ϕpxq “ x P ra, bs, or in Coq as
P := fun x => x \in ‘[a,b].

It makes sense to extend our properties to sig-
nal processors. In this case, we would like to
relate properties over input signals with proper-
ties over the output signals. Given sample-level
properties (ϕ,ψ) and input and output signals
(i, o), a reasonable statement could be: “if the
input signal i satisfies ϕ, then o should satisfy
ψ.”

If we think of our previous “being in an interval”
property, its extension to signal processors allows
us to capture stability. Indeed, we can precisely
state now: “if the input signal is bounded, then
the output signal will be too.”
Judging the Sampling The previous relation
between input and output signals and their prop-
erties constitutes an instance of a “high-level”
reasoning principle. It is highly convenient thus
to encode the fact that a signal processor satisfies
the property as a “judgment.” Our judgments
will be of the form, tϕu f tψu, with intended in-
terpretation Jtϕu f tψuK such that, for all input
signals with samples satisfying ϕ, all the output
samples of f satisfy ψ. Formally:

Jtϕu f tψuK ðñ
@i.p@t.ϕpiptqqq ùñ p@t, ψpJfKqpiqptqq

the Coq version is expressed in a slightly differ-
ent way, using all:
Definition ’[[ { P } f { Q } ]] :=

@ n (i : ’S_n), all i P ==> all (I f n) Q.

In the case of i input and o output signals, judge-
ments are extended pointwise to use one predi-
cate per signal: Jtϕ1, . . . , ϕiu f tϕ1, . . . , ϕouK.
Reasoning Rules Now, we’d like to have a
system of rules to determine when a judgment is
valid without resorting to analyzing its seman-
tics.

5From now on, we will interchangeably use Coq and
mathematical notation where no confusion can arise, omit-
ting double definitions.

The standard way to achieve this goal is to
introduce a “logic”, or a set of rules to infer
validity of judgments, and, by extension, of their
intended properties. The form of a rule is

A1 . . . An

B

meaning that, ifA1, . . . , An are valid, thenB also
is. This way, we can hopefully reduce validity
checking for B to smaller problems.

The rules of our particular system for sample-
level reasoning are shown in Figure 3. Rule Prim
is an example of a base rule, stating that a judg-
ment about a primitive is valid if its semantics is.
Rule Comp allows to reduce the verification of
composition to the verification of its individual
parts; a judgment about composition is valid if
there are valid judgments about the individual
signal processors such that the property of the
output of f implies the required property for the
input stream of g.
The Feed rule is quite similar to the compo-

sition rule: the internal state of the feedback
should obey an invariant θ, and samples from
the feedback output should be compatible with
the requirements of g’s input. We also require
that the initial value x0 satisfies ψ.
Now, all that remains is to check that the

rules are sound, that is to say that validity of the
premises implies the validity of the conclusion,
and we can reason using the newly defined logic:

Theorem 5.1 (Soundness). For any program f
of type i  o, if tϕ1, . . . , ϕiu f tψi, . . . , ψou is
derivable, Jtϕ1, . . . , ϕiu f tψi, . . . , ψouK is valid.

Proof. We proceed by induction on the deriva-
tion. The base case is the Prim rule, and proof is
immediate. For Comp soundness automatically
follows by induction hypotheses. For Feed , we
apply induction on the length of the input signal,
plus induction hypotheses.

6 Case Study: Filter Stability
As a case study, we will verify that the smooth
filter of Section 3 is stable, that is, if the input
amplitude is bounded, the output amplitude is.

Assume a well-formed interval ra, bs, including
0, and c P r0, 1s. In Coq:
Hypothesis (Hab : a <= b).
Hypothesis (H0ab : 0 \in ‘[a, b]).
Hypothesis (Hrc : c \in ‘[0, 1]).

then, we will prove:

ti P ra, bsu smoothpcq to P ra, bsu
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@i1, i2, p@t.ϕ1pi1ptqq ^ ϕ1pi2ptqqq ùñ p@t.ψpi1ptq ` i2ptqqq
tϕ1, ϕ2u ` tψu Prim

tϕu f tθu tθu g tψu
tϕu f : g tψu Comp

|ù ψpx0q tθ, ϕu f tψu tψu g tθu
tϕu f „ g tψu Feed

Figure 3: A simple logic for Faust program verification

l
tIabu ˚p1´ cq tIabcu

l
tIabc, Iabcu ` tIabu

l
tIabu ˚pcq tIabcu

tIabcu ` „ ˚pcq tIabu
ti P ra, bsu ˚p1´ cq : ` „ ˚pcq to P ra, bsu

with:
Iabpxq ” x P ra, bs Iabcpxq ” x P ra ˚ c, b ˚ cs Iabcpxq ” x P ra ˚ p1´ cq, b ˚ p1´ cqs

Figure 4: Derivation for smooth

Let us recall the definition of smooth:
smooth(c) = ∗(1´c) : + „∗(c)

then, we should apply rule Comp, with θpsq “
s P ra ˚ p1´ cq, b ˚ p1´ cqs. Using Prim gets us
to a first obligation, shown in Coq as:
Hi : i \in ‘[ a, b]
============================
i ∗ (1 ´ c) \in ‘[(a ∗ (1 ´ c)), (b ∗ (1 ´ c))]

which can be proved using the libraries by:
by rewrite ?itv_boundlr /= ?ler_wpmul2r

?ler_subr_addr ?add0r ?Hrc ?(itvP Hi).

The next step is to apply Feed , choosing
θpsq “ s P ra ˚ c, b ˚ cs. Then, we apply Prim
twice to get the obligations for + and ∗(c):
H1 : i1 \in ‘[( a ∗ c), (b ∗ c)]
H2 : i2 \in ‘[( a ∗ (1 ´ c)), (b ∗ (1 ´ c))]
============================
i1 + i2 \in ‘[a, b]

solved by:
have Ha: a = a ∗ c + a ∗ (1 ´ c)

by rewrite ´mulrDr addrC addrNK mulr1.
have Hb: b = b ∗ c + b ∗ (1 ´ c)

by rewrite ´mulrDr addrC addrNK mulr1.
by rewrite itv_boundlr /= Ha Hb

!ler_add ?(itvP H1) ?(itvP H2).

where have introduces a local lemma, and
Hi : i \in ‘[ a, b]
============================
i ∗ c \in ‘[( a ∗ c), (b ∗ c)]

solved by:
by rewrite itv_boundlr /=

?ler_wpmul2r ?(itvP Hi) ?Hrc.

We have chosen to prove the arithmetic obliga-
tions manually, but we should remark that there
exists tools that can prove this kind of results
automatically. The full derivation is in Figure 4.

7 Conclusion

We presented a case for the use of developer-
assisted formal reasoning tools in the field of
computer music and, more generally, audio DSP.
We gave a quick tour of the Coq/SSReflect en-
vironment, which we believe can be particularly
well fitted to reach such a vision. We applied our
approach to the Faust audio signal processing,
providing a formal semantics for its core and
detailing how a property of a filter can be proven
using a specific logic designed for Faust.
Future work will tackle other applications in

the audio processing domain to assess our tool,
together with the development of specific DSP
mechanisms within Coq/SSReflect (tactics,
tacticals, or even a dedicated DSP library). We
would also be interested in seeing how our sys-
tem can be of help to prove more foundational
theorems such as the Shannon Sampling Theo-
rem.
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Music and Art Program

(Please make sure to check http://lac.linuxaudio.org/2015/program for changes in the program
after the editorial deadline of this publication.)

Concert #1 Space / Landscape of Sound
Hochschule für Musik, Roter Saal, Thursday, April 9, 20:00

Topos Concrete
Clemens von Reusner

The territory (gr. topos) is a rough and harsh landscape with mountains, valleys, canyons and
plains, sand and stones, though it appears evenly and smooth. The color is grey. The size is about
30 square-meters. It is the floor of a garage and it is made of concrete (engl.) / Beton (german).

Concrete is a building material, a kind of unshaped dry powder made of sand, granulated stones
and cement, dusty and chaotic. Mixed with water it becomes flexible and fluid and goes into a
metamorphosis to become dry again, static and resistable and of any wanted shape. Aspects of
working with native granularity, fluidness as well as stiffness and different kind of acoustic spaces
were leading ideas of the composition. Software: Csound, Sox, SuperCollider. The csound 3rd-
order ambisonic opcodes by Jan Jacob Hofmann were used for multichannel spatialization.
– Premiere –

Clemens von Reusner (b. 1957) is a composer of electroacoustic music based in Germany. After
studying musicology and music-education, drums with Abbey Rader and Peter Giger he has
worked as a composer and a musician in different ensembles as well as a lecturer, music teacher
and an author.

Klinga
Helene Hedsund

The sound material in Klinga is made up of recordings of an old saw blade being hit and scraped
by various objects. The piece, and all sound processing is made in an instrument built by myself
in SuperCollider.

Helene Hedsund is an electroacoustic composer, currently doing a Ph.D in Birmingham, UK.
During the last 20 years she has been active at EMS (www.elektronmusikstudion.se) in Stock-
holm, Sweden. She has a background as a programmer and as a musician in non commercial
rock bands.

Benjolin
Patrick Gunawan Hartono

Benjolin is an electroacoustic composition for eight-channel speakers, in which all the sound
materials that have been used are the result of the Benjolin synthesizer designed by synth
pioneer Rob Horddijk. The compositional structure is intuitive based on gradual and dramatic
dynamic changes, which are represented by random pulses and square waves as offered by
Benjolin. An open-source 3D sound algorithm was implemented for the spatialization structure
of this piece, which has been realized in the SuperCollider environment.

Patrick Gunawan Hartono: Born in Makassar 1988, young Indonesian electroacoustic composer,
intermedia artist, member of Awahita Nusantara, whose art and musical interest is to use tech-
nology and scientific approach as creativity tools. He also interested in 3-D sound spatialisation,
analog/digital synthesis, psychoacoustics, and visual music.
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Voce231114
Massimo Fragalà

All the sounds that form this composition derive from the elaboration of word splash that I
recorded myself. Starting from this sample I tried to change the physical characteristics in order
to generate a range of sounds more or less different compared to their original variety. This was
possible using particular techniques of sound processing such as waveset distortion, brassage
stretching, segmenting the sound and reassembling segments, reverberation, etc. This composi-
tion has been realized on Linux KXStudio.

Massimo Fragalà graduated in Electronic Music and in Classical Guitar. His music has been
selected and performed in many festivals and conferences worldwide including ICMC 2003,
ICMC 2005, Festival Zèppelin 05, EAR Sounds Electric 2005, LAC06, ICMC 2006, Festival Mùsica
Viva 2008 (Sound Walk), NWEAMO 2008, Taukay FrammentAzioni 2008, Vox Novus 2008 (60x60
project), LAC 2011, Emufest 2011, 60x60 2012, PianoForte Mix, Csound Conference 2013, etc. One
of his electroacoustic compositions has been published on CD by Electronic Music Foundation
(EMF).

Concert #2 Time / Sound Machines
Hochschule für Musik, Roter Saal, Friday, April 10, 20:00

speaking clock
Mari Ohno

This work is an electroacoustic composition created with the recordings of speaking clocks in
various sites around the world. A speaking clock is a tool of sonification of "time", a phenomenon
people cannot hear. It has various expressions of time depending on the country or region. In this
work, the music mixes various expressions of time, based on the concept of "the expression of
time perception". Through this work, I attempt to give listeners curious and unique feelings
through the same sound experience depending on their cultural background.

Mari Ohno is a sound artist, composer and sound designer, based in London and Tokyo. She was
born in 1984 in Tokyo. She is studying at the MFA in Computational Studio Arts at Goldsmiths,
University of London, after graduated from the MA in Creativity in Music and Sound at Tokyo
University of the Arts. Her works are primarily focused in the areas of sound installation and
electroacoustic composition, exploring various dimensions of human perception. In addition to
her own work, she has also collaborated with other artists in composition and sound design for
films.

Selva di varie intonazioni
Michele Del Prete

Csound, tape music, 8 channel, 9'.54", 2013
The piece is based on concrete sounds I recorded in the Frari church in Venice, a building that
hosts two notable organs of the XVIII century. I have recorded their stops (as well as key noises)
individually and in several combinations, thus already obtaining a very rich timbral material I
have later worked on exclusively in Csound.

Michele Del Prete studied Philosophy in Berlin, Electronic Music in Venice (with Alvise Vidolin)
and Composition in Graz (with Beat Furrer). He is currently working on spatialisation models
rooted in the polychoral practice of the Renaissance Venetian school composing tape music and
works with acoustical instruments and electronics. He is also founder of Pas-e, association for
contemporary and electronic music in Venice.
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The Hidden and Mysterious Machinery of Sound
Fernando Lopez-Lezcano

I had been thinking about a piece that used simple sine oscillators in complex ways for a long
time. Going back to basics, in a sense. With that idea in mind I dived into the innards of Bill
Schottstaedt's new Scheme-based version of the CLM synthesis language and its s7 interpreter,
and stumbled into new ugens that allowed me to pile sinewaves in many different ways. The
"imaginary machines" examples I found there also helped shape the first code fragments I
experimented with. What remains of many lines of discarded Scheme code is the program that
writes this piece. It creates fractal machines that manipulate clockwork mechanisms, big and
small "virtual gears" that interlock, work without pause, and drive the basic sound synthesis
instruments. This universe of miniature machines is spread over 3D space using Ambisonics, and
the resulting soundscape is made of interlocking patterns of sound that drift through space.
WARNING: the piece contains repetitive phrases of sound (also known as "rhythms"), and is only
intended for immature audiences.

Fernando Lopez-Lezcano enjoys building things, fixing them when they don't work, and improv-
ing them even if they seem to work just fine. The scope of the word "things" is very wide, and
includes computer hardware and software, controllers, music composition, performance and
sound. His music blurs the line between technology and art, and is as much about form and
sound synthesis and spatialization, as about algorithms and custom software he writes for each
piece. He has been working in multichannel sound and diffusion techniques for a long time, and
can hack Linux for a living. At CCRMA since 1993, he combines music, electronic engineering
and programming with his love of teaching, composition and performance. He discovered the
intimate workings of sound while building his own analog synthesizers a very long time ago, and
even after more than 30 years, "El Dinosaurio" is still being used in live performances. He was the
Edgar Varese Guest Professor at TU Berlin during the Summer of 2008.

Coloured Dots And The Voids In Between
Jan Jacob Hofmann

In the piece "Coloured Dots And The Voids In Between" spatial textures of dot-like sounds occur.
The fields created by that expand and evolve in space and time. Important are not only the events
of sounds themselves but also the spaces in between these, which expand in different dimen-
sions spatially and temporally, overlap and thus create the actual space. All sounds have been
generated using solely the "pluck"-opcode, which simulates the sound of a plucked string.

The piece is spatially encoded in 3rd order Ambisonic and has been created with the program
"Csound" and "Cmask" along with Steven Yi's environment for composition "blue" using the
self-conceived editor for spatial composition "Spatial Granulator".

Jan Jacob Hofmann: Born 1966 in Germany. Diploma, branch of architecture at the University Of
Applied Sciences at Frankfurt am Main. Entered the class of Peter Cook and Enric Miralles at the
Staedelschule Art-School Frankfurt am Main for conceptual design and architecture. Diploma at
the Staedelschule in 1997. Since 1986 dealing with composition and electronic music. Since 2000
work on spatialisation of sound. Development and publication of Csound based tools for
spatialisation via 3rd order Ambisonic. Latest development is an instrument for spatial granular
synthesis via Ambisonic 3rd order. http://www.sonicarchitecture.de

Live Performance: Embedded Artist
Wolfgang Spahn, Malte Steiner
Philosophicum, Fakultätssaal, Friday, April 10, 21:30

Industrial noise and digital sound processing meets multi space projections: "Embedded Artist"
is a media performance by Malte Steiner and Wolfgang Spahn. The performance combines four

97



different layers of visions that are merging into one visual Gesamtkunstwerk: 3D models, video
scratching, live camera, and mechanical effects are likewise projected within the space.
“Embedded Artist” is not only projecting all over the walls, but it is filming the audience and the
space and re-projecting those images. Moreover, the light beam of each projector is fractionized
by a prism and therefore sends broken images onto the walls. For the performance both artists
developed a system for multiple embedded systems. To achieve this the following software and
programs are used: Pure Data, Raspberry Pi, Raspian, and Python. As hardware components
several Raspberry Pi's were combined with Paper-Duino-Pi's and remote controlled via OSC
from the performers laptops.

Wolfgang Spahn is a visual artist based in Berlin. His work includes interactive installations,
videos, projections, and miniature-slide-paintings. He studied mathematics and sociology in
Regensburg and Berlin. He currently teaches at Medienwerkstatt BBK Berlin, and is associated
lecturer at the University of Oldenburg, Institute of Art and Visual Culture.

Malte Steiner is media artist, sound designer and software developer. Started with electronic
music and visual arts around 1983, developing his own vision of the interdisciplinary
Gesamtkunstwerk. Concerts, exhibitions, workshops and residencies in Europe, Asia and Amer-
ica. Organizes twice a month the Pure Data patching circle at c-base Berlin.
http://www.block4.com

Concert #3 Live / Sound at Play
Hochschule für Musik, Roter Saal, Saturday, April 11, 20:00

Spielzeug #1 - poco a poco accelerando al sinus - for two Wii-Remotes
Jonghyun Kim

The main concept behind this piece is changing the repetition speed. I have taken a sound file
and cut it into sections. The excerpts are repeated at different playback rates. This affects the
sound quality and pitch. When the repetition rate is extremely fast, the output changes dramati-
cally. When each repetition is under 10 milliseconds in length, the original sound is no longer
recognizable, and only a sine wave-like timbre remains. This process modifies the micro-struc-
ture of the sound.

Technical Summary: This is a Wii-Remote live performance using granular synthesis. The granu-
lar-synth and algorithms was programmed in Pure Data. The performer uses Wii-Remotes in
each hand and swings them in pitch and roll axis (gyroscope). The granular synthesis algorithm
receives motion data from such movements of the controllers, and produces sound in realtime.
The buttons on the Wii-Remote also trigger samples and changes performance mode.

Jonghyun Kim is composer and software developer. He studied composition, piano, and
computer programming at Kyung Hee University in Seoul, Hochschule für Musik in Freiburg,
HfM in Stuttgart (guest), and took part in several seminars including IRCAM Paris and the Darm-
stadt summer course. He is director of 'Open Source Art Forum', founder of 'Pure Data Korea'
and 'Raspberry Pi Korea', developer of 'Good Metronome Pro' for iOS, a member of Seoul-based
performance group 'Linux Computer Ensemble'. His pieces have been performed in ZKM Karls-
ruhe, HfM Freiburg, and SICMF (Seoul International Computer Music Festival) in Korea.
Currently he is teaching computer music and composition at the Kyung Hee University in Seoul,
and sound art at Kaywon University of Art & Design in Gyeonggi-do.

TBA
Matthias Grabenhorst, Jörn Nettingsmeier

Two improvisation sketches, played by Matthias and spatialized by Jörn. The plan is to do one
free improvisation and one more song-oriented jazz tune, played on an electric guitar equipped
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with a hex pickup to allow for individual spatialization of each string, both to give the guitarist an
extra layer of freedom in the treatment of melody, and to allow us to "unwrap" complex voicings
by spreading them out in space.

Dance I
Jaeseong You

The Dance Music series is now continuing with alphabetical index. More recent pieces tend to
faithfully conform to IDM genre beyond simply borrowing its idioms and materials. In Dance I,
the samples are initially put together in a random assemblage, and musical narratives and
gestures are gradually extracted from such disorder. Some of the samples are created from
SuperCollider in Linux (Ubuntu) and others are collected from both open source libraries such as
freesound.org and commercial libraries.

Jaeseong You is a composer/researcher at Music & Audio Research Lab, Steinhardt, New York
University, where You is currently serving as Editorial Manager at Journal SEMAUS and working
under Dr. Tae Hong Park on Electro Acoustic Music Mine, Citygram, Urban Soundscape Event
Classification, and Sound Beacon.

Linux Sound Night
Baron, Saturday, April 11, 22:00

Vagabundo Barbudo meets Listening Lights
Andres Perez-Lopez

Vagabundo Barbudo is an electro-experimental dance music project. Music is produced with free
software tools, and distributed with copyleft licenses. Furthermore, "source" tracks are also
distributed, in order to encourage modifications. Listening Lights is a project for automatic ligh-
ting of music. The core of the project is RTML, a graphical SuperCollider framework for Real-
Time Music Information Retrieval.

In the performance, the music from Vagabundo Barbudo will be played, along with automatic
reactive lighting provided by RTML.

Andrés Pérez-López (Valencia, 1987) is a music technologist and musician based on Barcelona.
His scientific background is grounded on his Telecommunications Engineering (UPV) and
Master in Sound and Music Computing (MTG, UPF) studies. Currently, he works as freelance
technological developer for artistic performances; the SuperCollider libraries 3Dj (interactive 3D
sound spatialization) and RTML (real-time music information retrieval) are examples of his
recent work.  Apart from that, Andrés is a modern music performer, and develops his interest into
electronic music production and free culture in the Vagabundo Barbudo project.

Hallogenerator
Jakub Pisek

Performance sets up the mirror to producers, DJs and pop singers, who want to enhance their
vocal digitally. But the performance brings to the stage the essence of entertainment and intellec-
tual content in musical form at the same time. It also peacefully attacks the technological literacy
of the nation, the jazz police, and computer reliability.

This live performance is running on open source software (Arch Linux, Radeon driver, Pure Data,
Arduino...).
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Superdirt² - cello & live linux electro
Vincent Rateau (FR), Daniel Fritzsche

Superdirt² - fascinating electro beats mixed in with virtuous performed cello sounds which give a
result of a never achieved before dance ability! With Ras Tilo at the synthesizers and Käpt'n Dirt
with the cello it provides a musical experience which is situated between drum'n'bass, house,
dub, dubstep and even far beyond...

The Band: The two independent musicians knew each other through many musical projects and
as flatmates, but are coming from totally different musical genres. While Ras Tilo (Vincent
Rateau) got in place as a music producer and multi-instrumentalist, Käpt'n Dirt (Daniel
Fritzsche) continued his classical cello studies with an open mind and ears to new musical
genres. They are mixing musical genres, looping, synthesizing, improvising and never get tired of
going beyond the thinkable knowledge of music. Their first full-length album is called
"Algoriddims" - and licensed under a Creative Commons license.

visinin
William Light

Synthetic, electronic club music with an organic edge. Written and performed with Renoise,
Monomes, and a variety of other software, both off-the-shelf and custom.

William Light has been writing music and software from an early age. He's big on Linux and big
on audio, so, really, this is the perfect conference to catch him at! His musical style is influenced
by everything from folky guitar to highly technical electronic music.

Pjotr & Bass
Pjotr Lasschuit, Bass Jansson (NL)

A Live performance where interaction between live-coded visuals and hybrid-trumpet are the
key elements. The software used is Pure Data, Faust and OpenFrameworks.

Sound Installations and Demonstrations
Philosophicum, Fakultätssaal

Interactive virtual audio-visual concert simulation with TASCAR (software demonstration)
Giso Grimm, Joanna Luberadzka, Tobias Herzke, Volker Hohmann
Thursday, April 9 15:30

TASCAR is a toolbox for acoustic scene creation and rendering. In this demonstrator three
concert stages can be interactively explored in a virtual audio-visual environment. On the first
stage, a time varying physical feedback model with three moving microphones and three simu-
lated loudspeakers is placed. This simulation without any external sounds results in a sound
experience very similar to Steve Reich's "pendulum music". On the second stage a jazz band is
playing. The third musical event is a contemporary piece with moving virtual sources, performed
on a viola da gamba ensemble.

The interactive virtual acoustic environment is rendered in real-time and illustrates different
aspects of the rendering software as well as the effect of binaural hearing. The simulation is
rendered 3rd order horizontal Ambisonics. It will be reproduced in an 8-channel loudspeaker
setup. This demonstration complements the TASCAR paper in the main track.
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The Sound Of People (installation)
David Runge
Friday, April 10 10:00

Single-nucleotide polymorphisms (SNPs) are molecular DNA markers, that are actively being
researched in general science all over the world right now. Companies like 23andMe (and others)
offer sequencing parts of their customers genome (and afterwards sends that collection of data to
them). To free these sets of data for use in open science, openSNP started its work on collecting,
indexing and making available their users' uploads. The Sound of People was one of the first
attempts of synthesizing sounds from them. It was written in the SuperCollider audio synthesis
language and has been developed with the help of the Electronic Studio of TU Berlin. The soft-
ware creates a unique audio experience for up to twelve speakers.

acoustic cluster (video presentation)
Mari Ohno
Friday, April/10 14:00

A number of pipes of different lengths suspended within a space each contain a microphone and
are equipped with a freely movable speaker assembly beneath them. The distance between each
speaker assembly and microphone is expressed in the "howling" acoustic response. Having
divided the space with pipes, moving the speaker assemblies closer to the spaces within the pipes
amplifies the otherwise insignificant howling in the space outside the pipes, producing a sound
like that of a wind instrument. The pitch of these responses varies with the spatial properties of
each pipe. This series of phenomena seeks to make audible the normally inaudible material of
space. (This is a video presentation of the physical installation.)

Mari Ohno is a sound artist, composer and sound designer, based in London and Tokyo. She was
born in 1984 in Tokyo. She is studying at the MFA in Computational Studio Arts at Goldsmiths,
University of London, after graduated from the MA in Creativity in Music and Sound at Tokyo
University of the Arts. Her works are primarily focused in the areas of sound installation and
electroacoustic composition, exploring various dimensions of human perception. In addition to
her own work, she has also collaborated with other artists in composition and sound design for
films.

3Dj (software demonstration)
Andrés Perez-Lopez
Saturday, April 11 11:30

This is a demonstration of the 3Dj SuperCollider framework for real-time sound spatialization. In
the demonstration, we will explore several metaphors for sound diffusion, as algorithmic spatial-
ization, direct sound position control through orientation sensors, or spatialization based on
Music Information Retrieval. Sonic material will be both existing fixed media and live produced
electroacoustic sound.

Andrés Pérez-López (Valencia, 1987) is a music technologist and musician based on Barcelona.
His scientific background is grounded on his Telecommunications Engineering (UPV) and
Master in Sound and Music Computing (MTG, UPF) studies. Currently, he works as freelance
technological developer for artistic performances; the SuperCollider libraries 3Dj (interactive 3D
sound spatialization) and RTML (real-time music information retrieval) are examples of his
recent work.  Apart from that, Andrés is a modern music performer, and develops his interest into
electronic music production and free culture in the Vagabundo Barbudo project.
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C/K/P (installation)
Adam Neil
Saturday, April/11 14:00

In C/K/P, you will see three presentations of three video 'panels,' which change position in each
presentation. The sounds associated with each panel are present throughout, but are brought
forward in the mix when their panel takes the center position.

Adam Scott Neal (b. 1981, Atlanta) is a composer, video artist, and improviser. His theoretical
research focuses on modes of practice in experimental music, music and philosophy, and popu-
lar music analysis. He earned a PhD at the University of Florida and previous degrees at Queen's
University Belfast and Georgia State University. Adam has enjoyed over 100 performances of his
music in 23 states, as well as the UK, Canada, China, Italy, Mexico, Slovenia, and Switzerland. He
is Production Manager for the Charlotte New Music Festival and one of the Artistic Directors of
Terminus Ensemble (Atlanta).
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